Emerging evidence indicates that chemical exposures in the environment are overlooked drivers of cardiovascular diseases (CVD). Recent evidence suggests that micro- and nanoplastic (MNP) particles derived largely from the chemical or mechanical degradation of plastics might represent a novel CVD risk factor. Experimental data in preclinical models suggest that MNPs can foster oxidative stress, platelet aggregation, cell senescence, and inflammatory responses in endothelial and immune cells while promoting a range of cardiovascular and metabolic alterations that can lead to disease and premature death. In humans, MNPs derived from various plastics, including polyethylene and polyvinylchloride, have been detected in atherosclerotic plaques and other cardiovascular tissues, including pericardia, epicardial adipose tissues, pericardial adipose tissues, myocardia, and left atrial appendages. MNPs have measurable levels within thrombi and seem to accumulate preferentially within areas of vascular lesions. Their presence within carotid plaques is associated with subsequent increased incidence of cardiovascular events. To further investigate the possible causal role of MNPs in CVD, future studies should focus on large, prospective cohorts assessing the exposure of individuals to plastic-related pollution, the possible routes of absorption, the existence of a putative safety limit, the correspondence between exposure and accumulation in tissues, the timing between accumulation and CVD development, and the pathophysiological mechanisms instigated by pertinent concentrations of MNPs. Data from such studies would allow the design of preventive, or even therapeutic, strategies. Meanwhile, existing evidence suggests that reducing plastic production and use will produce benefits for the environment and for human health. This goal could be achieved through the UN Global Plastics Treaty that is currently in negotiation.

Micro-nanoplastics and cardiovascular diseases: evidence and perspectives / Prattichizzo, Francesco; Ceriello, Antonio; Pellegrini, Valeria; La Grotta, Rosalba; Graciotti, Laura; Olivieri, Fabiola; Paolisso, Pasquale; D'Agostino, Bruno; Iovino, Pasquale; Balestrieri, Maria Luisa; Rajagopalan, Sanjay; Landrigan, Philip J; Marfella, Raffaele; Paolisso, Giuseppe. - In: EUROPEAN HEART JOURNAL. - ISSN 0195-668X. - STAMPA. - (2024). [Epub ahead of print] [10.1093/eurheartj/ehae552]

Micro-nanoplastics and cardiovascular diseases: evidence and perspectives

Graciotti, Laura;Olivieri, Fabiola;
2024-01-01

Abstract

Emerging evidence indicates that chemical exposures in the environment are overlooked drivers of cardiovascular diseases (CVD). Recent evidence suggests that micro- and nanoplastic (MNP) particles derived largely from the chemical or mechanical degradation of plastics might represent a novel CVD risk factor. Experimental data in preclinical models suggest that MNPs can foster oxidative stress, platelet aggregation, cell senescence, and inflammatory responses in endothelial and immune cells while promoting a range of cardiovascular and metabolic alterations that can lead to disease and premature death. In humans, MNPs derived from various plastics, including polyethylene and polyvinylchloride, have been detected in atherosclerotic plaques and other cardiovascular tissues, including pericardia, epicardial adipose tissues, pericardial adipose tissues, myocardia, and left atrial appendages. MNPs have measurable levels within thrombi and seem to accumulate preferentially within areas of vascular lesions. Their presence within carotid plaques is associated with subsequent increased incidence of cardiovascular events. To further investigate the possible causal role of MNPs in CVD, future studies should focus on large, prospective cohorts assessing the exposure of individuals to plastic-related pollution, the possible routes of absorption, the existence of a putative safety limit, the correspondence between exposure and accumulation in tissues, the timing between accumulation and CVD development, and the pathophysiological mechanisms instigated by pertinent concentrations of MNPs. Data from such studies would allow the design of preventive, or even therapeutic, strategies. Meanwhile, existing evidence suggests that reducing plastic production and use will produce benefits for the environment and for human health. This goal could be achieved through the UN Global Plastics Treaty that is currently in negotiation.
2024
File in questo prodotto:
File Dimensione Formato  
Eur H J.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 4.01 MB
Formato Adobe PDF
4.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/334412
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact