A full scale load test on the apron is a very effective method for validating the design of a new operative quay wall. The availability of the monitoring data from the load test on a sheet pile wall of a major Italian port and the well-known geotechnical context of the site made it possible to explore the potential of three-dimensional (3D) numerical modeling to understand the response of the work to the applied load. In order to achieve a good match between real observations and numerical results, the limited impact of the working load on a robust geotechnical structure, the use of advanced constitutive models for soils and careful modeling of the construction phases and details of the work were taken into consideration. For this reason, the procedure adopted to calibrate the numerical model based on geotechnical test results is presented after the description of the load test monitoring data. Thanks to these efforts, the 3D numerical model, validated on the monitored data, allowed us to gain further insights on the structural behavior of the quay wall during construction and loading phases, underlining the relevant role played by some apparently marginal and often ignored details.

Assessment of Load Test Results on a Sheet Pile Quay Wall: The Potential of 3D Numerical Modeling / Alesiani, Pierluigi; Ruggeri, Paolo. - In: JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING. - ISSN 1090-0241. - STAMPA. - 150:9(2024). [10.1061/jggefk.gteng-12368]

Assessment of Load Test Results on a Sheet Pile Quay Wall: The Potential of 3D Numerical Modeling

Alesiani, Pierluigi;Ruggeri, Paolo
2024-01-01

Abstract

A full scale load test on the apron is a very effective method for validating the design of a new operative quay wall. The availability of the monitoring data from the load test on a sheet pile wall of a major Italian port and the well-known geotechnical context of the site made it possible to explore the potential of three-dimensional (3D) numerical modeling to understand the response of the work to the applied load. In order to achieve a good match between real observations and numerical results, the limited impact of the working load on a robust geotechnical structure, the use of advanced constitutive models for soils and careful modeling of the construction phases and details of the work were taken into consideration. For this reason, the procedure adopted to calibrate the numerical model based on geotechnical test results is presented after the description of the load test monitoring data. Thanks to these efforts, the 3D numerical model, validated on the monitored data, allowed us to gain further insights on the structural behavior of the quay wall during construction and loading phases, underlining the relevant role played by some apparently marginal and often ignored details.
File in questo prodotto:
File Dimensione Formato  
alesiani-ruggeri-2024-assessment-of-load-test-results-on-a-sheet-pile-quay-wall-the-potential-of-3d-numerical-modeling.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 4.01 MB
Formato Adobe PDF
4.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Accepted version.pdf

embargo fino al 04/07/2025

Descrizione: This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/10.1061/JGGEFK.GTENG-12368
Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Creative commons
Dimensione 6.19 MB
Formato Adobe PDF
6.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/333061
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact