We introduce and study a family of rate-compatible Low-Density Parity-Check (LDPC) codes. The design of these codes starts from simplex codes, defined by parity-check matrices having a simple form stemming from the coefficients of a primitive polynomial. For this reason, we call the new codes Primitive Rate-Compatible LDPC (PRC-LDPC) codes. By applying puncturing to these codes, we obtain a bit-level granularity of the code rate. We show that, in order to achieve good LDPC codes, the underlying polynomials, besides being primitive, must meet some more stringent conditions with respect to those of classical punctured simplex codes. We leverage non-modular Golomb rulers to take these new requirements into account. We characterize the minimum distance properties of PRC-LDPC codes, and study and discuss their encoding and decoding complexity. Finally, we assess the error rate performance of high rate PRC-LDPC codes under iterative decoding.
Rate-compatible LDPC Codes based on Primitive Polynomials and Golomb Rulers / Battaglioni, Massimo; Baldi, Marco; Chiaraluce, Franco; Cancellieri, Giovanni. - In: IEEE TRANSACTIONS ON COMMUNICATIONS. - ISSN 0090-6778. - ELETTRONICO. - 72:12(2024), pp. 7361-7373. [10.1109/tcomm.2024.3415597]
Rate-compatible LDPC Codes based on Primitive Polynomials and Golomb Rulers
Battaglioni, Massimo
Primo
;Baldi, Marco;Chiaraluce, Franco;Cancellieri, GiovanniUltimo
2024-01-01
Abstract
We introduce and study a family of rate-compatible Low-Density Parity-Check (LDPC) codes. The design of these codes starts from simplex codes, defined by parity-check matrices having a simple form stemming from the coefficients of a primitive polynomial. For this reason, we call the new codes Primitive Rate-Compatible LDPC (PRC-LDPC) codes. By applying puncturing to these codes, we obtain a bit-level granularity of the code rate. We show that, in order to achieve good LDPC codes, the underlying polynomials, besides being primitive, must meet some more stringent conditions with respect to those of classical punctured simplex codes. We leverage non-modular Golomb rulers to take these new requirements into account. We characterize the minimum distance properties of PRC-LDPC codes, and study and discuss their encoding and decoding complexity. Finally, we assess the error rate performance of high rate PRC-LDPC codes under iterative decoding.File | Dimensione | Formato | |
---|---|---|---|
Rate-Compatible_LDPC_Codes_Based_on_Primitive_Polynomials_and_Golomb_Rulers.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
2.58 MB
Formato
Adobe PDF
|
2.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.