The main aim of this study is to investigate numerically and experimentally the effects of double-diffusive convection on calculation time and accuracy results of a Salt Gradient Solar Pond (SGSP). To this end, two-numerical models are developed based on the Fortran programming language. The first one is based on energy balance neglecting the development of double-diffusive convection, while the second is two-dimensional and is based on Navier-Stokes, heat, and mass transfer equations considering the development of double-diffusive convection. The heat losses via the upper part, bottom, and vertical walls, as well as the internal heating of saltwater, are considered. In order to validate and compare both numerical models, a laboratory-scale SGSP is designed, built, and tested indoors for 82 h. Results indicate that the two numerical models developed can predict the SGSP thermal behavior with good accuracy. Furthermore, the average relative error between experimental and numerical results is around 9.39% for Upper Convective Zone (UCZ) and 2.92% for Lower Convective Zone (LCZ) based on the first model. This error reduces to about 5.98% for UCZ and 3.74% for LCZ by using the second model. Consequently, the neglect of double-diffusive convection in the SGSP modeling tends to overestimate the thermal energy stored in the storage zone by about 4.3%. Based on the calculation time analysis, results show that the second model returns a calculation time hundreds of times larger than the first one and, accordingly, an increase in computational cost.

Effects of Double-Diffusive Convection on Calculation Time and Accuracy Results of a Salt Gradient Solar Pond: Numerical Investigation and Experimental Validation / Rghif, Y.; Colarossi, D.; Principi, P.. - In: SUSTAINABILITY. - ISSN 2071-1050. - 15:2(2023). [10.3390/su15021479]

Effects of Double-Diffusive Convection on Calculation Time and Accuracy Results of a Salt Gradient Solar Pond: Numerical Investigation and Experimental Validation

Colarossi D.
Secondo
;
2023-01-01

Abstract

The main aim of this study is to investigate numerically and experimentally the effects of double-diffusive convection on calculation time and accuracy results of a Salt Gradient Solar Pond (SGSP). To this end, two-numerical models are developed based on the Fortran programming language. The first one is based on energy balance neglecting the development of double-diffusive convection, while the second is two-dimensional and is based on Navier-Stokes, heat, and mass transfer equations considering the development of double-diffusive convection. The heat losses via the upper part, bottom, and vertical walls, as well as the internal heating of saltwater, are considered. In order to validate and compare both numerical models, a laboratory-scale SGSP is designed, built, and tested indoors for 82 h. Results indicate that the two numerical models developed can predict the SGSP thermal behavior with good accuracy. Furthermore, the average relative error between experimental and numerical results is around 9.39% for Upper Convective Zone (UCZ) and 2.92% for Lower Convective Zone (LCZ) based on the first model. This error reduces to about 5.98% for UCZ and 3.74% for LCZ by using the second model. Consequently, the neglect of double-diffusive convection in the SGSP modeling tends to overestimate the thermal energy stored in the storage zone by about 4.3%. Based on the calculation time analysis, results show that the second model returns a calculation time hundreds of times larger than the first one and, accordingly, an increase in computational cost.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/331336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact