A natural extension of bipartite graphs are d-partite clutters, where d >= 2 is an integer. For a poset P, Ene, Herzog and Mohammadi introduced the d-partite clutter C_{P,d} of multichains of length d in P, showing that it is Cohen-Macaulay. We prove that the cover ideal of C_{P,d} admits an x(i)-splitting, determining a recursive formula for its Betti numbers and generalizing a result of Francisco, Ha and Van Tuyl on the cover ideal of Cohen-Macaulay bipartite graphs. Moreover we prove a Betti splitting result for the Alexander dual of a Cohen Macaulay simplicial complex. Interesting examples are given, in particular the first example of ideal that does not admit Betti splitting in any characteristic.

Recursive Betti numbers for Cohen-Macaulay d-partite clutters arising from posets / Bolognini, D.. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - ELETTRONICO. - 220:9(2016), pp. 3102-3118. [10.1016/j.jpaa.2016.02.006]

Recursive Betti numbers for Cohen-Macaulay d-partite clutters arising from posets

Bolognini D.
2016-01-01

Abstract

A natural extension of bipartite graphs are d-partite clutters, where d >= 2 is an integer. For a poset P, Ene, Herzog and Mohammadi introduced the d-partite clutter C_{P,d} of multichains of length d in P, showing that it is Cohen-Macaulay. We prove that the cover ideal of C_{P,d} admits an x(i)-splitting, determining a recursive formula for its Betti numbers and generalizing a result of Francisco, Ha and Van Tuyl on the cover ideal of Cohen-Macaulay bipartite graphs. Moreover we prove a Betti splitting result for the Alexander dual of a Cohen Macaulay simplicial complex. Interesting examples are given, in particular the first example of ideal that does not admit Betti splitting in any characteristic.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/331243
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact