A monomial ideal I admits a Betti splitting I = J + K if the Betti numbers of I can be determined in terms of the Betti numbers of the ideals J, K and J boolean AND K. Given a monomial ideal I, we prove that I = J + K is a Betti splitting of I, provided J and K are componentwise linear, generalizing a result of Francisco, Ha, and Van Tuyl. If I has a linear resolution, the converse also holds. We apply this result recursively to the Alexander dual of vertex-decomposable, shellable and constructible simplicial complexes. Moreover we determine the graded Betti numbers of the defining ideal of three general fat points in the projective space. (C) 2016 Elsevier Inc. All rights reserved.

Betti splitting via componentwise linear ideals / Bolognini, Davide. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 455:(2016), pp. 1-13. [10.1016/j.jalgebra.2016.02.003]

Betti splitting via componentwise linear ideals

Bolognini, Davide
2016-01-01

Abstract

A monomial ideal I admits a Betti splitting I = J + K if the Betti numbers of I can be determined in terms of the Betti numbers of the ideals J, K and J boolean AND K. Given a monomial ideal I, we prove that I = J + K is a Betti splitting of I, provided J and K are componentwise linear, generalizing a result of Francisco, Ha, and Van Tuyl. If I has a linear resolution, the converse also holds. We apply this result recursively to the Alexander dual of vertex-decomposable, shellable and constructible simplicial complexes. Moreover we determine the graded Betti numbers of the defining ideal of three general fat points in the projective space. (C) 2016 Elsevier Inc. All rights reserved.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/331242
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact