We study the partially ordered set P(a1,...,an) of all multidegrees (b1,...,bn) of monomials x(1)(b1)...x(n)(bn), which properly divide x(1)(a1)...x(n)(an). We prove that the order complex Delta(P(a(1),...,a(n))) of P(a(1),...a(n)) is (non-pure) shellable, by showing that the order dual of P(a(1),...,a(n)) is CL-shellable. Along the way, we exhibit the poset P(4,4) as a new example of a poset with CL-shellable order dual that is not CL-shellable itself. For n=2 we provide the rank of all homology groups of the order complex Delta(P(a1,a2)). Furthermore, we give a succinct formula for the Euler characteristic of Delta(P(a1,a2)).

The poset of proper divisibility / Bolognini, D.; Macchia, A.; Ventura, E.; Welker, V.. - In: SIAM JOURNAL ON DISCRETE MATHEMATICS. - ISSN 0895-4801. - ELETTRONICO. - 31:3(2017), pp. 2093-2109. [10.1137/15M1049142]

The poset of proper divisibility

Bolognini D.;
2017-01-01

Abstract

We study the partially ordered set P(a1,...,an) of all multidegrees (b1,...,bn) of monomials x(1)(b1)...x(n)(bn), which properly divide x(1)(a1)...x(n)(an). We prove that the order complex Delta(P(a(1),...,a(n))) of P(a(1),...a(n)) is (non-pure) shellable, by showing that the order dual of P(a(1),...,a(n)) is CL-shellable. Along the way, we exhibit the poset P(4,4) as a new example of a poset with CL-shellable order dual that is not CL-shellable itself. For n=2 we provide the rank of all homology groups of the order complex Delta(P(a1,a2)). Furthermore, we give a succinct formula for the Euler characteristic of Delta(P(a1,a2)).
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/331241
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact