For any finite poset P, we introduce a homogeneous space as a quotient of the general linear group. When P is a chain this quotient is a complete flag variety. Moreover, we provide partitions for any set in a projective space, induced by the action of incidence groups of posets. Our general framework allows to deal with several combinatorial and geometric objects, unifying and extending different structures such as Bruhat orders, parking functions and weak orders on matroids. We introduce the notion of P-flag matroid, extending flag matroids.

P-flag spaces and incidence stratifications / Bolognini, Davide; Sentinelli, Paolo. - In: SELECTA MATHEMATICA. NEW SERIES. - ISSN 1420-9020. - ELETTRONICO. - 27:4(2021). [10.1007/s00029-021-00685-8]

P-flag spaces and incidence stratifications

Bolognini, Davide;
2021-01-01

Abstract

For any finite poset P, we introduce a homogeneous space as a quotient of the general linear group. When P is a chain this quotient is a complete flag variety. Moreover, we provide partitions for any set in a projective space, induced by the action of incidence groups of posets. Our general framework allows to deal with several combinatorial and geometric objects, unifying and extending different structures such as Bruhat orders, parking functions and weak orders on matroids. We introduce the notion of P-flag matroid, extending flag matroids.
2021
File in questo prodotto:
File Dimensione Formato  
P-flag spaces and incidence stratifications.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 484.65 kB
Formato Adobe PDF
484.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
P-flag spaces_Bolognini_aam.pdf

Open Access dal 28/07/2022

Descrizione: This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00029-021-00685-8
Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 374.14 kB
Formato Adobe PDF
374.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/331183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact