Non-flammable ionic liquid electrolytes (ILEs) are well-known candidates for safer and long-lifespan lithium metal batteries (LMBs). However, the high viscosity and insufficient Li+ transport limit their practical application. Recently, non-solvating and low-viscosity co-solvents diluting ILEs without affecting the local Li+ solvation structure are employed to solve these problems. The diluted electrolytes, i.e., locally concentrated ionic liquid electrolytes (LCILEs), exhibiting lower viscosity, faster Li+ transport, and enhanced compatibility toward lithium metal anodes, are feasible options for the next-generation high-energy-density LMBs. Herein, the progress of the recently developed LCILEs are summarised, including their physicochemical properties, solution structures, and applications in LMBs with a variety of high-energy cathode materials. Lastly, a perspective on the future research directions of LCILEs to further understanding and achieve improved cell performances is outlined.

Locally Concentrated Ionic Liquid Electrolytes for Lithium-Metal Batteries / Liu, X.; Mariani, A.; Adenusi, H.; Passerini, S.. - In: ANGEWANDTE CHEMIE. INTERNATIONAL EDITION. - ISSN 1433-7851. - 62:17(2023). [10.1002/anie.202219318]

Locally Concentrated Ionic Liquid Electrolytes for Lithium-Metal Batteries

Adenusi H.;
2023-01-01

Abstract

Non-flammable ionic liquid electrolytes (ILEs) are well-known candidates for safer and long-lifespan lithium metal batteries (LMBs). However, the high viscosity and insufficient Li+ transport limit their practical application. Recently, non-solvating and low-viscosity co-solvents diluting ILEs without affecting the local Li+ solvation structure are employed to solve these problems. The diluted electrolytes, i.e., locally concentrated ionic liquid electrolytes (LCILEs), exhibiting lower viscosity, faster Li+ transport, and enhanced compatibility toward lithium metal anodes, are feasible options for the next-generation high-energy-density LMBs. Herein, the progress of the recently developed LCILEs are summarised, including their physicochemical properties, solution structures, and applications in LMBs with a variety of high-energy cathode materials. Lastly, a perspective on the future research directions of LCILEs to further understanding and achieve improved cell performances is outlined.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/330834
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 9
social impact