In the context of global challenges related to climate change, energy sustainability and food security, the study of the thermophysical properties of substances is of particular importance. This thesis is dedicated to the thermophysical properties of substances to use them in applications such as the development of refrigeration systems or the design of heat storage systems even in solar cooking. Two new models have been developed in the form of a correlation and an artificial neural network to accurately determine dynamic viscosity trends as a function of temperature and pressure in the liquid phase of low Global Warming Potential alternative refrigerants belonging to the family of hydrofluoroolefines and hydrochlorofluoroofins. Likewise, a correlation and an artificial neural network have been developed to describe the surface tension of organic sulfides. In both cases the results obtained were compared with those of other models. With regard to Phase Change Materials (PCM), the work analyzes the thermophysical properties of some polyalcohols as potential PCMs with high enthalpy values of phase change suitable for use in solar cookers. In order to use them in latent heat storage systems, however, it is necessary to use suitable procedures because polyalcohols present several problems: they are subject to supercooling, they have low thermal conductivity, and they have thermal stability problems. The acquired know-how has allowed to modify a xylitol-based thermal storage device to obtain an "on-demand" heat release and thus to extend the cooling time of a solar cooker. This work also focuses on the use of solar energy in cooking food describing the construction and experimental characterization of two identical prototypes of the solar cooker called Kimono with the aim of obtaining two devices with which verify, at a later stage, the effectiveness of a latent heat storage system.
Questa tesi è dedicata alle proprietà termofisiche delle sostanze al fine di utilizzarle per lo sviluppo di sistemi di refrigerazione o la progettazione di sistemi di accumulo del calore anche nella cottura solare. Due nuovi modelli, sotto forma di correlazione e di rete neurale artificiale, sono stati sviluppati per determinare con precisione l’andamento della viscosità dinamica in fase liquida in funzione della temperatura e della pressione di refrigeranti alternativi a basso Global Warming Potential appartenenti alla famiglia delle idrofluoroolefine e delle idroclorofluoroolefine. Parallelamente, sono state sviluppate una correlazione e una rete neurale artificiale per descrivere la tensione superficiale dei solfuri organici. In entrambi i casi i risultati ottenuti sono stati confrontati con quelli di altri modelli. Per quanto riguarda i materiali a cambiamento di fase (PCM), il lavoro analizza le proprietà termofisiche di alcuni polialcoli in quanto potenziali PCM con elevati valori di entalpia di cambiamento di fase adatti a essere utilizzati anche in forni solari. Per poterli utilizzare in sistemi di accumulo a calore latente però è necessario impiegare procedure adeguate in quanto i polialcoli presentano diverse problematiche: sono soggetti a sottoraffreddamento, hanno una bassa conducibilità termica e presentano problemi di stabilità termica. Il know-how acquisito ha permesso di modificare un dispositivo di accumulo termico a base di xilitolo per ottenere un rilascio di calore “on-demand” e allungare così il tempo di raffreddamento di un forno solare. In aggiunta, questo lavoro si concentra sull’uso dell’energia solare nella cottura del cibo e si conclude con la descrizione della costruzione e caratterizzazione sperimentale di due prototipi identici del forno solare denominato Kimono con l’obiettivo di ottenere due dispositivi con cui verificare, in una fase successiva, l’efficacia di un sistema di accumulo del calore latente.
Proprietà termofisiche delle sostanze in ambito energetico / Muciaccia, PIO FRANCESCO. - (2024 Jun 17).
Proprietà termofisiche delle sostanze in ambito energetico
MUCIACCIA, PIO FRANCESCO
2024-06-17
Abstract
In the context of global challenges related to climate change, energy sustainability and food security, the study of the thermophysical properties of substances is of particular importance. This thesis is dedicated to the thermophysical properties of substances to use them in applications such as the development of refrigeration systems or the design of heat storage systems even in solar cooking. Two new models have been developed in the form of a correlation and an artificial neural network to accurately determine dynamic viscosity trends as a function of temperature and pressure in the liquid phase of low Global Warming Potential alternative refrigerants belonging to the family of hydrofluoroolefines and hydrochlorofluoroofins. Likewise, a correlation and an artificial neural network have been developed to describe the surface tension of organic sulfides. In both cases the results obtained were compared with those of other models. With regard to Phase Change Materials (PCM), the work analyzes the thermophysical properties of some polyalcohols as potential PCMs with high enthalpy values of phase change suitable for use in solar cookers. In order to use them in latent heat storage systems, however, it is necessary to use suitable procedures because polyalcohols present several problems: they are subject to supercooling, they have low thermal conductivity, and they have thermal stability problems. The acquired know-how has allowed to modify a xylitol-based thermal storage device to obtain an "on-demand" heat release and thus to extend the cooling time of a solar cooker. This work also focuses on the use of solar energy in cooking food describing the construction and experimental characterization of two identical prototypes of the solar cooker called Kimono with the aim of obtaining two devices with which verify, at a later stage, the effectiveness of a latent heat storage system.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Muciaccia.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza d'uso:
Pubblico dominio-Nessun diritto riservato all'autore/editore
Dimensione
32.21 MB
Formato
Adobe PDF
|
32.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.