The energy transition to a decarbonized energy scenario leads toward distributed energy resources in which end users can both generate and consume renewable electricity. As a result, several challenges arise in terms of decentralized energy resource management and grid reliability. With microgrids, the cooperation of distributed energy resources is improved, and with peer-to-peer energy exchange and demand response programs, better energy allocation and flexible management of consumption loads according to the needs of supply systems are achieved. However, effective peer-to-peer energy allocation and flexible demand management in microgrids require the development of market structures, pricing mechanisms, and demand response strategies enabled by a reliable communication system. In this field, blockchain offers a decentralized communication tool for energy transactions that can provide transparency, security, and immutability. Therefore, this paper provides a comprehensive review of key factors for peer-to-peer energy trading and flexible energy demand management in blockchain-enabled microgrids. The goal is to provide guidelines on the basic components that are useful in ensuring efficient operation of microgrids. Finally, using a holistic view of technology adoption as a tool for peer-to-peer communication in microgrids, this paper reviews projects aimed at implementing blockchain in energy trading and flexible demand management.

Blockchain-Enabled Microgrids: Toward Peer-to-Peer Energy Trading and Flexible Demand Management / Evens, Maarten; Ercoli, Patricia; Arteconi, Alessia. - In: ENERGIES. - ISSN 1996-1073. - 16:18(2023). [10.3390/en16186741]

Blockchain-Enabled Microgrids: Toward Peer-to-Peer Energy Trading and Flexible Demand Management

Ercoli, Patricia;Arteconi, Alessia
2023-01-01

Abstract

The energy transition to a decarbonized energy scenario leads toward distributed energy resources in which end users can both generate and consume renewable electricity. As a result, several challenges arise in terms of decentralized energy resource management and grid reliability. With microgrids, the cooperation of distributed energy resources is improved, and with peer-to-peer energy exchange and demand response programs, better energy allocation and flexible management of consumption loads according to the needs of supply systems are achieved. However, effective peer-to-peer energy allocation and flexible demand management in microgrids require the development of market structures, pricing mechanisms, and demand response strategies enabled by a reliable communication system. In this field, blockchain offers a decentralized communication tool for energy transactions that can provide transparency, security, and immutability. Therefore, this paper provides a comprehensive review of key factors for peer-to-peer energy trading and flexible energy demand management in blockchain-enabled microgrids. The goal is to provide guidelines on the basic components that are useful in ensuring efficient operation of microgrids. Finally, using a holistic view of technology adoption as a tool for peer-to-peer communication in microgrids, this paper reviews projects aimed at implementing blockchain in energy trading and flexible demand management.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/329795
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact