Production problems have a significant impact on the on-time delivery of orders, resulting in deviations from planned scenarios. Therefore, it is crucial to predict interruptions during scheduling and to find optimal production sequencing solutions. This paper introduces a self-learning framework that integrates association rules and optimisation techniques to develop a scheduling algorithm capable of learning from past production experiences and anticipating future problems. Association rules identify factors that hinder the production process, while optimisation techniques use mathematical models to optimise the sequence of tasks and minimise execution time. In addition, association rules establish correlations between production parameters and success rates, allowing corrective factors for production quantity to be calculated based on confidence values and success rates. The proposed solution demonstrates robustness and flexibility, providing efficient solutions for Flow-Shop and Job-Shop scheduling problems with reduced calculation times. The article includes two Flow-Shop and Job-Shop examples where the framework is applied.

A Combination of Association Rules and Optimization Model to Solve Scheduling Problems in an Unstable Production Environment / Del Gallo, M.; Ciarapica, F. E.; Mazzuto, G.; Bevilacqua, M.. - In: MANAGEMENT AND PRODUCTION ENGINEERING REVIEW. - ISSN 2080-8208. - 14:4(2023), pp. 56-70. [10.24425/mper.2023.147204]

A Combination of Association Rules and Optimization Model to Solve Scheduling Problems in an Unstable Production Environment

Del Gallo M.;Ciarapica F. E.;Mazzuto G.;Bevilacqua M.
2023-01-01

Abstract

Production problems have a significant impact on the on-time delivery of orders, resulting in deviations from planned scenarios. Therefore, it is crucial to predict interruptions during scheduling and to find optimal production sequencing solutions. This paper introduces a self-learning framework that integrates association rules and optimisation techniques to develop a scheduling algorithm capable of learning from past production experiences and anticipating future problems. Association rules identify factors that hinder the production process, while optimisation techniques use mathematical models to optimise the sequence of tasks and minimise execution time. In addition, association rules establish correlations between production parameters and success rates, allowing corrective factors for production quantity to be calculated based on confidence values and success rates. The proposed solution demonstrates robustness and flexibility, providing efficient solutions for Flow-Shop and Job-Shop scheduling problems with reduced calculation times. The article includes two Flow-Shop and Job-Shop examples where the framework is applied.
2023
File in questo prodotto:
File Dimensione Formato  
Del Gallo_Combination-Association-Rules-Optimization-Model_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/329352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact