Introduction: Artificial intelligence and computer vision are revolutionizing the way we perceive video analysis in minimally invasive surgery. This emerging technology has increasingly been leveraged successfully for video segmentation, documentation, education, and formative assessment. New, sophisticated platforms allow pre-determined segments chosen by surgeons to be automatically presented without the need to review entire videos. This study aimed to validate and demonstrate the accuracy of the first reported AI-based computer vision algorithm that automatically recognizes surgical steps in videos of totally extraperitoneal (TEP) inguinal hernia repair. Methods: Videos of TEP procedures were manually labeled by a team of annotators trained to identify and label surgical workflow according to six major steps. For bilateral hernias, an additional change of focus step was also included. The videos were then used to train a computer vision AI algorithm. Performance accuracy was assessed in comparison to the manual annotations. Results: A total of 619 full-length TEP videos were analyzed: 371 were used to train the model, 93 for internal validation, and the remaining 155 as a test set to evaluate algorithm accuracy. The overall accuracy for the complete procedure was 88.8%. Per-step accuracy reached the highest value for the hernia sac reduction step (94.3%) and the lowest for the preperitoneal dissection step (72.2%). Conclusions: These results indicate that the novel AI model was able to provide fully automated video analysis with a high accuracy level. High-accuracy models leveraging AI to enable automation of surgical video analysis allow us to identify and monitor surgical performance, providing mathematical metrics that can be stored, evaluated, and compared. As such, the proposed model is capable of enabling data-driven insights to improve surgical quality and demonstrate best practices in TEP procedures.
A novel high accuracy model for automatic surgical workflow recognition using artificial intelligence in laparoscopic totally extraperitoneal inguinal hernia repair (TEP) / Ortenzi, Monica; Rapoport Ferman, Judith; Antolin, Alenka; Bar, Omri; Zohar, Maya; Perry, Ori; Asselmann, Dotan; Wolf, Tamir. - In: SURGICAL ENDOSCOPY. - ISSN 0930-2794. - 37:11(2023), pp. 8818-8828. [10.1007/s00464-023-10375-5]
A novel high accuracy model for automatic surgical workflow recognition using artificial intelligence in laparoscopic totally extraperitoneal inguinal hernia repair (TEP)
Monica Ortenzi
;
2023-01-01
Abstract
Introduction: Artificial intelligence and computer vision are revolutionizing the way we perceive video analysis in minimally invasive surgery. This emerging technology has increasingly been leveraged successfully for video segmentation, documentation, education, and formative assessment. New, sophisticated platforms allow pre-determined segments chosen by surgeons to be automatically presented without the need to review entire videos. This study aimed to validate and demonstrate the accuracy of the first reported AI-based computer vision algorithm that automatically recognizes surgical steps in videos of totally extraperitoneal (TEP) inguinal hernia repair. Methods: Videos of TEP procedures were manually labeled by a team of annotators trained to identify and label surgical workflow according to six major steps. For bilateral hernias, an additional change of focus step was also included. The videos were then used to train a computer vision AI algorithm. Performance accuracy was assessed in comparison to the manual annotations. Results: A total of 619 full-length TEP videos were analyzed: 371 were used to train the model, 93 for internal validation, and the remaining 155 as a test set to evaluate algorithm accuracy. The overall accuracy for the complete procedure was 88.8%. Per-step accuracy reached the highest value for the hernia sac reduction step (94.3%) and the lowest for the preperitoneal dissection step (72.2%). Conclusions: These results indicate that the novel AI model was able to provide fully automated video analysis with a high accuracy level. High-accuracy models leveraging AI to enable automation of surgical video analysis allow us to identify and monitor surgical performance, providing mathematical metrics that can be stored, evaluated, and compared. As such, the proposed model is capable of enabling data-driven insights to improve surgical quality and demonstrate best practices in TEP procedures.File | Dimensione | Formato | |
---|---|---|---|
464_2023_Article_10375.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.