As the size of a layered assembly is reduced, the adhesive layer thickness correspondingly decreases from macro to micro scale. The influence of micro-scale adhesive layers becomes more pronounced, significantly changing the overall performance of the composite structure. This work proposes an original imperfect interface model simulating the behavior of a thin strain gradient elastic adhesive, embedded between two strain gradient elastic bodies, through the asymptotic methods. The intermediate layer is assumed to be mechanically compliant. The contact laws, expressed in terms of the jumps and means values of the displacements, normal derivatives of the displacements, stresses, and double-stresses, represent a formal generalization of the soft elastic interface conditions. Two simple benchmark equilibrium problems (a three-layer composite micro-bar subjected to an axial load and a torsional moment) are developed to analytically/numerically assess the asymptotic model. Size effects and non-local phenomena, due to high strain concentrations at the edges, are highlighted. The example proves the efficiency of the proposed approach in designing micro-scale layered devices.

A size-dependent imperfect interface model for adhesively bonded joints considering strain gradient elasticity / Serpilli, M.; Rizzoni, R.; Lebon, F.; Raffa, M. L.; Rodriguez-Ramos, R.. - In: INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES. - ISSN 0020-7683. - 291:(2024). [10.1016/j.ijsolstr.2024.112720]

A size-dependent imperfect interface model for adhesively bonded joints considering strain gradient elasticity

Serpilli M.
;
2024-01-01

Abstract

As the size of a layered assembly is reduced, the adhesive layer thickness correspondingly decreases from macro to micro scale. The influence of micro-scale adhesive layers becomes more pronounced, significantly changing the overall performance of the composite structure. This work proposes an original imperfect interface model simulating the behavior of a thin strain gradient elastic adhesive, embedded between two strain gradient elastic bodies, through the asymptotic methods. The intermediate layer is assumed to be mechanically compliant. The contact laws, expressed in terms of the jumps and means values of the displacements, normal derivatives of the displacements, stresses, and double-stresses, represent a formal generalization of the soft elastic interface conditions. Two simple benchmark equilibrium problems (a three-layer composite micro-bar subjected to an axial load and a torsional moment) are developed to analytically/numerically assess the asymptotic model. Size effects and non-local phenomena, due to high strain concentrations at the edges, are highlighted. The example proves the efficiency of the proposed approach in designing micro-scale layered devices.
File in questo prodotto:
File Dimensione Formato  
Strain_gradient_imperfect_interface___soft_case-6.pdf

embargo fino al 12/02/2026

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Creative commons
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Serpilli_A size-dependent_VoR_2024.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/327740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact