Mountainous zones are often characterized by complex orography and contacts between different aquifers that usually complicate the use of isotope hydrology techniques. The Apennine chain (Italy) and 10 mountain and mid-mountain areas belonging to it are the objective of this study. An original isotopic data treatment, able to identify the most probable recharge area for several springs/springs' groups/wells, has been developed. The method consists of a two-step approach: (1) the determination of the spring/wells computed isotope recharge elevation; (2) an advanced δ18O precipitation distribution model over the study area supported by statistical and GIS-based procedures implemented by two processes: first, the clipping of precipitation δ18O values (depicted from the δ18O–elevation relationships obtained for each study area) over a most probable recharge area for each analyzed spring or well and, second, the calculation of the overlapping distribution between the spring/well mean δ18O values ± σ and the precipitation δ18O content for each outcropping aquifer. A new regional δ18O gradient covering 150 km latitudinal length of central Italy has been defined. Seven LMWL and δ18O–elevation relationships able to represent the local precipitation isotopic composition have been obtained. The mean elevation of the springs and wells recharge areas have been assessed by a comparison between the obtained gradient with nine δ18O gradients available in the literature and those obtained at a local scale. The new isotopic modeling approach can stress whether the mere isotope modeling based on the stable isotope of oxygen agrees with the hydrogeological setting of the study areas.

Regional vs. Local Isotopic Gradient: Insights and Modeling from Mid‐Mountain Areas in Central Italy / Tazioli, Alberto; Fronzi, Davide; Palpacelli, Stefano. - In: GROUND WATER. - ISSN 0017-467X. - ELETTRONICO. - (2024). [10.1111/gwat.13395]

Regional vs. Local Isotopic Gradient: Insights and Modeling from Mid‐Mountain Areas in Central Italy

Alberto Tazioli
Primo
Writing – Original Draft Preparation
;
Davide Fronzi
Data Curation
;
Stefano Palpacelli
Investigation
2024-01-01

Abstract

Mountainous zones are often characterized by complex orography and contacts between different aquifers that usually complicate the use of isotope hydrology techniques. The Apennine chain (Italy) and 10 mountain and mid-mountain areas belonging to it are the objective of this study. An original isotopic data treatment, able to identify the most probable recharge area for several springs/springs' groups/wells, has been developed. The method consists of a two-step approach: (1) the determination of the spring/wells computed isotope recharge elevation; (2) an advanced δ18O precipitation distribution model over the study area supported by statistical and GIS-based procedures implemented by two processes: first, the clipping of precipitation δ18O values (depicted from the δ18O–elevation relationships obtained for each study area) over a most probable recharge area for each analyzed spring or well and, second, the calculation of the overlapping distribution between the spring/well mean δ18O values ± σ and the precipitation δ18O content for each outcropping aquifer. A new regional δ18O gradient covering 150 km latitudinal length of central Italy has been defined. Seven LMWL and δ18O–elevation relationships able to represent the local precipitation isotopic composition have been obtained. The mean elevation of the springs and wells recharge areas have been assessed by a comparison between the obtained gradient with nine δ18O gradients available in the literature and those obtained at a local scale. The new isotopic modeling approach can stress whether the mere isotope modeling based on the stable isotope of oxygen agrees with the hydrogeological setting of the study areas.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/326922
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact