Liquid and solid waste coming from the agro-industry sector were investigated to develop ecotechnological solutions in the circular economy framework. Fishery by-products, for example, were first characterized and then a biorefinery aimed to recover nutrients and added values biomolecules was developed. Due to nutrient imbalance in European agriculture and high dependency on the extra-EU market, the biorefinery scheme focused on the production of agronomic products (BBFs): liming agent for correcting soil acidity from mollusc shells, protein hydrolysate acting as biostimulant or organic N-fertilizer from fish waste and mollusc residual meat, co-composted biochar to be used as soil improver from hydrolysis leftover and chitin from crustacean by-products. The profitability of the biorefinery was mainly dependent on the selling price of hydrolysates (as biostimulants) which also entailed the highest operating costs due to high-energy process (e.g. concentration) and enzyme price. This highlights the importance of producing high-quality products economically and sustainably to increase the feasibility of the biorefinery. In the chemical industry, high water use is requested especially for cooling systems. It is estimated that 20% of all freshwater consumption globally is used by industry. Internal reuse of process wastewater was evaluated as a sustainable solution to reduce freshwater intake and depletion. In the specific, attention was paid to the digital aspect such as control logic implementation and sensor installation which could improve the reliability of the process by optimizing the use of materials and energy and minimizing environmental drawbacks. Agriculture is by far the greatest water user, accounting for around 70% of the total extracted water. Reclaimed water can contribute to compensating the gap between available and needed water around the globe, providing a regular water supply but an increase in awareness and safety is requested to ensure more widespread reuse. Risk management strategies were tested through quantitative risk evaluation and the development of supporting guidelines. Parallely, life cycle analysis was used to evaluate the environmental sustainability of technologies (e.g. trenchless techniques) and solutions for the water infrastructure (e.g. sewer upgrade for flooding prevention or collection of decentralized agglomerate). Realization impacts and possible beneficial effects during the operation phase were measured to establish the environmental payback period or ecoefficiency of the new infrastructure. European Taxonomy defines environmental objectives and the Do No Significant Harm principle which must be respected by all the project funding by the Recovery Plan. LCA results were contextualized in this new “sustainable financial” framework to quantify environmental damage, if any.
I rifiuti liquidi e solidi provenienti dal settore agroindustriale sono stati studiati per sviluppare soluzioni ecotecnologiche di economia circolare. I sottoprodotti della pesca, ad esempio, sono stati caratterizzati per poi sviluppare una bioraffineria volta al recupero di nutrienti e prodotti di valori aggiunto. Visto lo squilibrio di nutrienti nell'agricoltura europea e l'elevata dipendenza dal mercato extra-UE, lo schema di bioraffineria si è concentrato sulla produzione di prodotti agronomici: correttivi di acidità del suolo dai gusci dei molluschi, idrolizzati proteici che agiscono come biostimolanti o fertilizzanti organici dallo scarto di pesce e quello organico dei molluschi, biochar co-compostato da utilizzare come ammendante da i residui dell'idrolisi e chitina da gusci di crostacei. La redditività della bioraffineria dipende principalmente dal prezzo di vendita degli idrolizzati (come biostimolanti) che comportano anche i costi operativi visti i processi altamente energirvori (ad es. concentrazione) e il prezzo degli enzimi. Ciò sottolinea l'importanza di produrre prodotti di alta qualità in modo economico e sostenibile per aumentare la fattibilità della bioraffineria. Nell'industria chimica, un forte utilizzo idrico è richiesto particolarmente per i sistemi di raffreddamento. Si stima che il 20% di tutto il consumo di acqua dolce a livello globale sia utilizzato dall'industria. Il riutilizzo interno delle acque reflue di processo è stato valutato come una soluzione sostenibile per ridurre l'estrazione di acqua dolce. Particolare attenzione è stata posta su aspetti digitali come l'implementazione della logica di controllo e l'installazione di sensori che potrebbero migliorare l'affidabilità del processo ottimizzando l'uso di materiali ed energia e riducendo al minimo gli impatti ambientali. L'agricoltura è di gran lunga il maggiore utilizzatore di acqua, rappresentando circa il 70% del totale dell'acqua estratta. Le acque reflue affinate possono contribuire a compensare il divario tra l'acqua disponibile e quella necessaria in tutto il mondo, fornendo un approvvigionamento idrico regolare, ma è necessario aumentare la consapevolezza e la sicurezza per garantire un riutilizzo più diffuso. Le strategie di gestione del rischio sono state testate attraverso la valutazione quantitativa e lo sviluppo di linee guida di supporto. Parallelamente, l'analisi del ciclo di vita è stata utilizzata per valutare la sostenibilità ambientale delle tecnologie (ad es. No-dig) e le soluzioni per le infrastrutture idriche (ad es. potenziamento di fognature per la prevenzione delle inondazioni o il collettamento dei reflui da agglomerati decentrati). Gli impatti di realizzazione e i possibili effetti benefici durante la fase operativa sono stati misurati per stabilire il periodo di recupero ambientale o l'ecoefficienza della nuova infrastruttura. La tassonomia europea definisce gli obiettivi ambientali e il principio Do No Significant Harm che deve essere rispettato da tutti i progetti finanziati dal Piano di Recupero. I risultati della LCA sono stati contestualizzati in questo nuovo quadro "finanziario sostenibile" per quantificare gli eventuali danni ambientali.
ECO-TECHNOLOGICAL AND DIGITAL INNOVATIONS FOR CIRCULAR BIOECONOMY IN AGRO-INDUSTRY AND URBAN SERVICES / Andreola, Corinne. - (2024 Mar 22).
ECO-TECHNOLOGICAL AND DIGITAL INNOVATIONS FOR CIRCULAR BIOECONOMY IN AGRO-INDUSTRY AND URBAN SERVICES
ANDREOLA, CORINNE
2024-03-22
Abstract
Liquid and solid waste coming from the agro-industry sector were investigated to develop ecotechnological solutions in the circular economy framework. Fishery by-products, for example, were first characterized and then a biorefinery aimed to recover nutrients and added values biomolecules was developed. Due to nutrient imbalance in European agriculture and high dependency on the extra-EU market, the biorefinery scheme focused on the production of agronomic products (BBFs): liming agent for correcting soil acidity from mollusc shells, protein hydrolysate acting as biostimulant or organic N-fertilizer from fish waste and mollusc residual meat, co-composted biochar to be used as soil improver from hydrolysis leftover and chitin from crustacean by-products. The profitability of the biorefinery was mainly dependent on the selling price of hydrolysates (as biostimulants) which also entailed the highest operating costs due to high-energy process (e.g. concentration) and enzyme price. This highlights the importance of producing high-quality products economically and sustainably to increase the feasibility of the biorefinery. In the chemical industry, high water use is requested especially for cooling systems. It is estimated that 20% of all freshwater consumption globally is used by industry. Internal reuse of process wastewater was evaluated as a sustainable solution to reduce freshwater intake and depletion. In the specific, attention was paid to the digital aspect such as control logic implementation and sensor installation which could improve the reliability of the process by optimizing the use of materials and energy and minimizing environmental drawbacks. Agriculture is by far the greatest water user, accounting for around 70% of the total extracted water. Reclaimed water can contribute to compensating the gap between available and needed water around the globe, providing a regular water supply but an increase in awareness and safety is requested to ensure more widespread reuse. Risk management strategies were tested through quantitative risk evaluation and the development of supporting guidelines. Parallely, life cycle analysis was used to evaluate the environmental sustainability of technologies (e.g. trenchless techniques) and solutions for the water infrastructure (e.g. sewer upgrade for flooding prevention or collection of decentralized agglomerate). Realization impacts and possible beneficial effects during the operation phase were measured to establish the environmental payback period or ecoefficiency of the new infrastructure. European Taxonomy defines environmental objectives and the Do No Significant Harm principle which must be respected by all the project funding by the Recovery Plan. LCA results were contextualized in this new “sustainable financial” framework to quantify environmental damage, if any.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Andreola.pdf
embargo fino al 01/09/2025
Tipologia:
Tesi di dottorato
Licenza d'uso:
Tutti i diritti riservati
Dimensione
14.63 MB
Formato
Adobe PDF
|
14.63 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.