A set of ∼9 nm CoFe2O4 nanoparticles substituted with Zn2+ and Ni2+ was prepared by thermal decomposition of metallic acetylacetonate precursors to correlate the effects of replacement of Co2+ with the resulting magnetic properties. Due to the distinct selectivity of these cations for the spinel ferrite crystal sites, we show that it is possible to tailor the magnetic anisotropy, saturation magnetization, and interparticle interactions of the nanoparticles during the synthesis stage. This approach unlocks new possibilities for enhancing the performance of spinel ferrite nanoparticles in specific applications. Particularly, our study shows that the replacement of Co2+ by 48% of Zn2+ ions led to an increase in saturation magnetization of approximately 40% from ∼103 A m2 kg−1 to ∼143 A m2 kg−1, whereas the addition of Ni2+ at a similar percentage led to an ∼30% decrease in saturation magnetization to 68-72 A m2 kg−1. The results of calculations based on the two-sublattice Néel model of magnetization match the experimental findings, demonstrating the model's effectiveness in the strategic design of spinel ferrite nanoparticles with targeted magnetic properties through doping/inversion degree engineering.

Chemical engineering of cationic distribution in spinel ferrite nanoparticles: the effect on the magnetic properties / Baricic, M.; Maltoni, P.; Barucca, G.; Yaacoub, N.; Omelyanchik, A.; Canepa, F.; Mathieu, R.; Peddis, D.. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - ELETTRONICO. - 26:7(2024), pp. 6325-6334. [10.1039/d3cp06029b]

Chemical engineering of cationic distribution in spinel ferrite nanoparticles: the effect on the magnetic properties

Barucca G.;
2024-01-01

Abstract

A set of ∼9 nm CoFe2O4 nanoparticles substituted with Zn2+ and Ni2+ was prepared by thermal decomposition of metallic acetylacetonate precursors to correlate the effects of replacement of Co2+ with the resulting magnetic properties. Due to the distinct selectivity of these cations for the spinel ferrite crystal sites, we show that it is possible to tailor the magnetic anisotropy, saturation magnetization, and interparticle interactions of the nanoparticles during the synthesis stage. This approach unlocks new possibilities for enhancing the performance of spinel ferrite nanoparticles in specific applications. Particularly, our study shows that the replacement of Co2+ by 48% of Zn2+ ions led to an increase in saturation magnetization of approximately 40% from ∼103 A m2 kg−1 to ∼143 A m2 kg−1, whereas the addition of Ni2+ at a similar percentage led to an ∼30% decrease in saturation magnetization to 68-72 A m2 kg−1. The results of calculations based on the two-sublattice Néel model of magnetization match the experimental findings, demonstrating the model's effectiveness in the strategic design of spinel ferrite nanoparticles with targeted magnetic properties through doping/inversion degree engineering.
2024
File in questo prodotto:
File Dimensione Formato  
d3cp06029b.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/326837
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact