Let s ( 0 , 1 ), N > 2 s and D s , 2 ( R N ) : = { u L 2 s â -( R N ) : â u â D s , 2 ( R N ) : = ( C N , s 2 â R 2 N | u ( x )-u ( y ) | 2 | x-y | N + 2 s d x d y ) 1 2 < ∞ } , where 2 s â -: = 2 N N-2 s is the fractional critical exponent and C N , s is a positive constant. We consider functionals J : D s , 2 ( R N ) → R of the type J ( u ) : = 1 2 â u â D s , 2 ( R N ) 2-â R N b ( x ) G ( u ) d x , where G ( t ) : = â 0 t g ( τ ) d τ, g : R → R is a continuous function with subcritical growth at infinity, and b : R N → R is a suitable weight function. We prove that a local minimizer of J in the topology of the subspace V s : = { u D s , 2 ( R N ) : u C ( R N ) with sup x R N ( 1 + | x | N-2 s ) | u ( x ) | < ∞ } must be a local minimizer of J in the D s , 2 ( R N )-Topology.

Ds,2(RN) versus C(RN) local minimizers / Ambrosio, V.. - In: ASYMPTOTIC ANALYSIS. - ISSN 0921-7134. - 134:1-2(2023), pp. 227-239. [10.3233/ASY-231833]

Ds,2(RN) versus C(RN) local minimizers

Ambrosio V.
2023-01-01

Abstract

Let s ( 0 , 1 ), N > 2 s and D s , 2 ( R N ) : = { u L 2 s â -( R N ) : â u â D s , 2 ( R N ) : = ( C N , s 2 â R 2 N | u ( x )-u ( y ) | 2 | x-y | N + 2 s d x d y ) 1 2 < ∞ } , where 2 s â -: = 2 N N-2 s is the fractional critical exponent and C N , s is a positive constant. We consider functionals J : D s , 2 ( R N ) → R of the type J ( u ) : = 1 2 â u â D s , 2 ( R N ) 2-â R N b ( x ) G ( u ) d x , where G ( t ) : = â 0 t g ( τ ) d τ, g : R → R is a continuous function with subcritical growth at infinity, and b : R N → R is a suitable weight function. We prove that a local minimizer of J in the topology of the subspace V s : = { u D s , 2 ( R N ) : u C ( R N ) with sup x R N ( 1 + | x | N-2 s ) | u ( x ) | < ∞ } must be a local minimizer of J in the D s , 2 ( R N )-Topology.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/325938
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact