The use of Artificial Intelligence (AI) to preserve and promote cultural heritage has experienced significant growth in recent years. Among the various areas of cultural heritage, numismatics have emerged as a particularly promising field where we can develop AI solutions. Numismatics refers to the study of coins, tokens, paper money, and medals, which play a critical role in understanding human history and culture. However, there are still limited resources available to help researchers and collectors in the identification of coins. This is due to the vast number of coins in circulation, which presents a significant challenge in developing smart tools for classification tasks. This paper aims to provide a contribution to this setting. In particular, we start by creating a new dataset called EURO-Coin, which consists of images showing the side of coins with reliefs and is designed to facilitate the training and testing of AI models for euro coin classification. Then, we propose two approaches that leverage Convolutional Neural Networks and self-attention layers to classify the country and value of the coins. In our experiments, we obtain an accuracy of 86.9% for country classification and an accuracy of 96.4% for value classification. Finally, we conduct an ablation study to evaluate the impact of the preprocessing activities and attention layers in our approaches

A deep learning approach to classify country and value of modern coins / Cirillo, Stefano; Solimando, Giandomenico; Virgili, Luca. - In: NEURAL COMPUTING & APPLICATIONS. - ISSN 1433-3058. - 36:20(2024), pp. 11759-11775. [10.1007/s00521-023-09355-6]

A deep learning approach to classify country and value of modern coins

Virgili, Luca
2024-01-01

Abstract

The use of Artificial Intelligence (AI) to preserve and promote cultural heritage has experienced significant growth in recent years. Among the various areas of cultural heritage, numismatics have emerged as a particularly promising field where we can develop AI solutions. Numismatics refers to the study of coins, tokens, paper money, and medals, which play a critical role in understanding human history and culture. However, there are still limited resources available to help researchers and collectors in the identification of coins. This is due to the vast number of coins in circulation, which presents a significant challenge in developing smart tools for classification tasks. This paper aims to provide a contribution to this setting. In particular, we start by creating a new dataset called EURO-Coin, which consists of images showing the side of coins with reliefs and is designed to facilitate the training and testing of AI models for euro coin classification. Then, we propose two approaches that leverage Convolutional Neural Networks and self-attention layers to classify the country and value of the coins. In our experiments, we obtain an accuracy of 86.9% for country classification and an accuracy of 96.4% for value classification. Finally, we conduct an ablation study to evaluate the impact of the preprocessing activities and attention layers in our approaches
2024
File in questo prodotto:
File Dimensione Formato  
s00521-023-09355-6.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Coin_Classification.pdf

Open Access dal 23/12/2024

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 6.41 MB
Formato Adobe PDF
6.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/325492
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact