The most often dispersed environmental pollutants that are released both directly and indirectly into the environment that may eventually reach aquatic ecosystems and contaminate aquatic biomes are cigarette butts (CBs). Toxicants such as nicotine, dangerous metals, total particulate matter, and recognized carcinogens can be introduced and transported via CBs into aquatic ecosystems. The examination of the effects of synthetic nicotine on three different species of cultured benthic foraminifera was the focus of this study. Three foraminiferal species from three distinct biomineralization pathways were specifically examined for viability and cellular ultrastructure, including the calcareous perforate Rosalina globularis, the calcareous imperforate Quinqueloculina spp., and the agglutinated Textularia agglutinans. The survival rate, cellular stress, and decalcification were used to assess the toxicological effects of synthetic nicotine. We were able to analyze the reaction of major macromolecules and calcium carbonate to this pollutant using FTIR (Fourier Transform Infrared) spectroscopy. High Performance Liquid Chromatography (HPLC) study was performed to increase our understanding of nicotine bioavailability in the medium culture. Different acute experiments were performed at different dates, and all indicated that synthetic nicotine is acutely hazardous to all three cultured foraminiferal taxa at lethal and sublethal concentrations. Each species responded differently depending on the type of shell biomineralization. Synthetic nicotine enhances shell decalcification and affects the composition of cytoplasmic macromolecules such as lipids and proteins, according to the FTIR spectroscopy investigations. The lipid content rose at lethal concentrations, possibly due to the creation of vesicles. The proteins signal evidences general cellular dyshomeostasis. The integration among the acute toxicity assay, synchrotron, and chemical HPLC analyses provided a valuable approach for the assessment of nicotine as a biomarker of exposure to the toxicants associated with smoking and the impact of this emerging and hazardous material on calcifying marine species.
Response of Foraminifera to Anthropogenic Nicotine Pollution of Cigarette Butts: An Experimental Approach / Sabbatini, Anna; Caridi, Francesca; Birarda, Giovanni; Costanzi, Elisa; Amici, Adolfo; Mobbili, Giovanna; Buosi, Carla; De Giudici, Giovanni; Medas, Daniela; Negri, Alessandra. - In: JOURNAL OF MARINE SCIENCE AND ENGINEERING. - ISSN 2077-1312. - STAMPA. - 11:10(2023). [10.3390/jmse11101951]
Response of Foraminifera to Anthropogenic Nicotine Pollution of Cigarette Butts: An Experimental Approach
Anna Sabbatini
;Francesca Caridi;Adolfo Amici;Giovanna Mobbili;Alessandra Negri
2023-01-01
Abstract
The most often dispersed environmental pollutants that are released both directly and indirectly into the environment that may eventually reach aquatic ecosystems and contaminate aquatic biomes are cigarette butts (CBs). Toxicants such as nicotine, dangerous metals, total particulate matter, and recognized carcinogens can be introduced and transported via CBs into aquatic ecosystems. The examination of the effects of synthetic nicotine on three different species of cultured benthic foraminifera was the focus of this study. Three foraminiferal species from three distinct biomineralization pathways were specifically examined for viability and cellular ultrastructure, including the calcareous perforate Rosalina globularis, the calcareous imperforate Quinqueloculina spp., and the agglutinated Textularia agglutinans. The survival rate, cellular stress, and decalcification were used to assess the toxicological effects of synthetic nicotine. We were able to analyze the reaction of major macromolecules and calcium carbonate to this pollutant using FTIR (Fourier Transform Infrared) spectroscopy. High Performance Liquid Chromatography (HPLC) study was performed to increase our understanding of nicotine bioavailability in the medium culture. Different acute experiments were performed at different dates, and all indicated that synthetic nicotine is acutely hazardous to all three cultured foraminiferal taxa at lethal and sublethal concentrations. Each species responded differently depending on the type of shell biomineralization. Synthetic nicotine enhances shell decalcification and affects the composition of cytoplasmic macromolecules such as lipids and proteins, according to the FTIR spectroscopy investigations. The lipid content rose at lethal concentrations, possibly due to the creation of vesicles. The proteins signal evidences general cellular dyshomeostasis. The integration among the acute toxicity assay, synchrotron, and chemical HPLC analyses provided a valuable approach for the assessment of nicotine as a biomarker of exposure to the toxicants associated with smoking and the impact of this emerging and hazardous material on calcifying marine species.File | Dimensione | Formato | |
---|---|---|---|
Sabbatini et al MDPI dec 2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
3.5 MB
Formato
Adobe PDF
|
3.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.