In this paper, we analyse the computational advantages of the spherical parametrisation for correlation matrices in the context of Maximum Likelihood estimation via numerical optimisation. By using the special structure of correlation matrices, it is possible to define a bijective transformation of an n x n correlation matrix R into a vector of n(n-1)/2 angles between 0 and pi. After discussing the algebraic aspects of the problem, we provide examples of the use of the technique we propose in popular econometric models: the multivariate DCC-GARCH model, widely used in applied finance for large-scale problems, and the multivariate probit model, for which the computation of the likelihood is typically accomplished by simulated Maximum Likelihood. Our analysis reveals the conditions when the spherical parametrisation is advantageous; numerical optimisation algorithms are often more robust and efficient, especially when R is large and near-singular.

The Spherical Parametrisation for Correlation Matrices and its Computational Advantages / Lucchetti, Riccardo; Pedini, Luca. - In: COMPUTATIONAL ECONOMICS. - ISSN 0927-7099. - (2023). [10.1007/s10614-023-10467-3]

The Spherical Parametrisation for Correlation Matrices and its Computational Advantages

Lucchetti, Riccardo;Pedini, Luca
2023-01-01

Abstract

In this paper, we analyse the computational advantages of the spherical parametrisation for correlation matrices in the context of Maximum Likelihood estimation via numerical optimisation. By using the special structure of correlation matrices, it is possible to define a bijective transformation of an n x n correlation matrix R into a vector of n(n-1)/2 angles between 0 and pi. After discussing the algebraic aspects of the problem, we provide examples of the use of the technique we propose in popular econometric models: the multivariate DCC-GARCH model, widely used in applied finance for large-scale problems, and the multivariate probit model, for which the computation of the likelihood is typically accomplished by simulated Maximum Likelihood. Our analysis reveals the conditions when the spherical parametrisation is advantageous; numerical optimisation algorithms are often more robust and efficient, especially when R is large and near-singular.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/322391
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact