We consider the problem of pricing European exotic path-dependent derivatives on an underlying described by the Heston stochastic volatility model. Lipton has found a closed form integral representation of the joint transition probability density function of underlying price and variance in the Heston model. We give a convenient numerical approximation of this formula and we use the obtained approximated transition probability density function to price discrete path-dependent options as discounted expectations. The expected value of the payoff is calculated evaluating an integral with the Monte Carlo method using a variance reduction technique based on a suitable approximation of the transition probability density function of the Heston model. As a test case, we evaluate the price of a discrete arithmetic average Asian option, when the average over n = 12 prices is considered, that is when the integral to evaluate is a 2n = 24 dimensional integral. We show that the method proposed is computationally efficient and gives accurate results.

"A numerical method to price exotic path-dependent options on an underlying described by Heston stochastic volatility model" / L. V., Ballestra; Pacelli, Graziella; F., Zirilli. - In: JOURNAL OF BANKING & FINANCE. - ISSN 0378-4266. - 31:(2007), pp. 3420-3437.

"A numerical method to price exotic path-dependent options on an underlying described by Heston stochastic volatility model"

PACELLI, GRAZIELLA;
2007-01-01

Abstract

We consider the problem of pricing European exotic path-dependent derivatives on an underlying described by the Heston stochastic volatility model. Lipton has found a closed form integral representation of the joint transition probability density function of underlying price and variance in the Heston model. We give a convenient numerical approximation of this formula and we use the obtained approximated transition probability density function to price discrete path-dependent options as discounted expectations. The expected value of the payoff is calculated evaluating an integral with the Monte Carlo method using a variance reduction technique based on a suitable approximation of the transition probability density function of the Heston model. As a test case, we evaluate the price of a discrete arithmetic average Asian option, when the average over n = 12 prices is considered, that is when the integral to evaluate is a 2n = 24 dimensional integral. We show that the method proposed is computationally efficient and gives accurate results.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/32060
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact