Regular physical exercise and appropriate nutrition affect metabolic and hormonal responses and may reduce the risk of developing chronic non-communicable diseases such as high blood pressure, ischemic stroke, coronary heart disease, some types of cancer, and type 2 diabetes mellitus. Computational models describing the metabolic and hormonal changes due to the synergistic action of exercise and meal intake are, to date, scarce and mostly focussed on glucose absorption, ignoring the contribution of the other macronutrients. We here describe a model of nutrient intake, stomach emptying, and absorption of macronutrients in the gastrointestinal tract during and after the ingestion of a mixed meal, including the contribution of proteins and fats. We integrated this effort to our previous work in which we modeled the effects of a bout of physical exercise on metabolic homeostasis. We validated the computational model with reliable data from the literature. The simulations are overall physiologically consistent and helpful in describing the metabolic changes due to everyday life stimuli such as multiple mixed meals and variable periods of physical exercise over prolonged periods of time. This computational model may be used to design virtual cohorts of subjects differing in sex, age, height, weight, and fitness status, for specialized in silico challenge studies aimed at designing exercise and nutrition schemes to support health.

A computational model of the effects of macronutrients absorption and physical exercise on hormonal regulation and metabolic homeostasis / Palumbo, M. C.; de Graaf, A. A.; Morettini, M.; Tieri, P.; Krishnan, S.; Castiglione, F.. - In: COMPUTERS IN BIOLOGY AND MEDICINE. - ISSN 0010-4825. - ELETTRONICO. - 163:(2023). [10.1016/j.compbiomed.2023.107158]

A computational model of the effects of macronutrients absorption and physical exercise on hormonal regulation and metabolic homeostasis

Morettini M.;
2023-01-01

Abstract

Regular physical exercise and appropriate nutrition affect metabolic and hormonal responses and may reduce the risk of developing chronic non-communicable diseases such as high blood pressure, ischemic stroke, coronary heart disease, some types of cancer, and type 2 diabetes mellitus. Computational models describing the metabolic and hormonal changes due to the synergistic action of exercise and meal intake are, to date, scarce and mostly focussed on glucose absorption, ignoring the contribution of the other macronutrients. We here describe a model of nutrient intake, stomach emptying, and absorption of macronutrients in the gastrointestinal tract during and after the ingestion of a mixed meal, including the contribution of proteins and fats. We integrated this effort to our previous work in which we modeled the effects of a bout of physical exercise on metabolic homeostasis. We validated the computational model with reliable data from the literature. The simulations are overall physiologically consistent and helpful in describing the metabolic changes due to everyday life stimuli such as multiple mixed meals and variable periods of physical exercise over prolonged periods of time. This computational model may be used to design virtual cohorts of subjects differing in sex, age, height, weight, and fitness status, for specialized in silico challenge studies aimed at designing exercise and nutrition schemes to support health.
2023
File in questo prodotto:
File Dimensione Formato  
Palumbo_CiBM_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/319951
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact