We performed an experimental review of current diarization systems for the conversational telephone speech (CTS) domain. In detail, we considered a total of eight different algorithms belonging to clustering-based, end-to-end neural diarization (EEND), and speech separation guided diarization (SSGD) paradigms. We studied the inference-time computational requirements and diarization accuracy on four CTS datasets with different characteristics and languages. We found that, among all methods considered, EEND-vector clustering (EEND-VC) offers the best trade-off in terms of computing requirements and performance. More in general, EEND models have been found to be lighter and faster in inference compared to clustering-based methods. However, they also require a large amount of diarization-oriented annotated data. In particular EEND-VC performance in our experiments degraded when the dataset size was reduced, whereas self-attentive EEND (SA-EEND) was less affected. We also found that SA-EEND gives less consistent results among all the datasets compared to EEND-VC, with its performance degrading on long conversations with high speech sparsity. Clustering-based diarization systems, and in particular VBx, instead have more consistent performance compared to SA-EEND but are outperformed by EEND-VC. The gap with respect to this latter is reduced when overlap-aware clustering methods are considered. SSGD is the most computationally demanding method, but it could be convenient if speech recognition has to be performed. Its performance is close to SA-EEND but degrades significantly when the training and inference data characteristics are less matched.

An experimental review of speaker diarization methods with application to two-speaker conversational telephone speech recordings / Serafini, L.; Cornell, S.; Morrone, G.; Zovato, E.; Brutti, A.; Squartini, S.. - In: COMPUTER SPEECH AND LANGUAGE. - ISSN 0885-2308. - ELETTRONICO. - 82:(2023). [10.1016/j.csl.2023.101534]

An experimental review of speaker diarization methods with application to two-speaker conversational telephone speech recordings

Serafini L.
;
Cornell S.;Morrone G.;Squartini S.
2023-01-01

Abstract

We performed an experimental review of current diarization systems for the conversational telephone speech (CTS) domain. In detail, we considered a total of eight different algorithms belonging to clustering-based, end-to-end neural diarization (EEND), and speech separation guided diarization (SSGD) paradigms. We studied the inference-time computational requirements and diarization accuracy on four CTS datasets with different characteristics and languages. We found that, among all methods considered, EEND-vector clustering (EEND-VC) offers the best trade-off in terms of computing requirements and performance. More in general, EEND models have been found to be lighter and faster in inference compared to clustering-based methods. However, they also require a large amount of diarization-oriented annotated data. In particular EEND-VC performance in our experiments degraded when the dataset size was reduced, whereas self-attentive EEND (SA-EEND) was less affected. We also found that SA-EEND gives less consistent results among all the datasets compared to EEND-VC, with its performance degrading on long conversations with high speech sparsity. Clustering-based diarization systems, and in particular VBx, instead have more consistent performance compared to SA-EEND but are outperformed by EEND-VC. The gap with respect to this latter is reduced when overlap-aware clustering methods are considered. SSGD is the most computationally demanding method, but it could be convenient if speech recognition has to be performed. Its performance is close to SA-EEND but degrades significantly when the training and inference data characteristics are less matched.
2023
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0885230823000530-main.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/319712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact