This work proposes an ethical framework that highlights possible ethical risks in the design and use of deep-learning-based vision systems for monitoring infants' movements in neonatal intensive care units. We discuss biases and ways to mitigate them for promoting accountable systems in clinical practice.

Accountable Deep-Learning-Based Vision Systems for Preterm Infant Monitoring / Migliorelli, Lucia; Tiribelli, Simona; Cacciatore, Alessandro; Giovanola, Benedetta; Frontoni, Emanuele; Moccia, Sara. - In: COMPUTER. - ISSN 0018-9162. - 56:5(2023), pp. 84-93. [10.1109/MC.2023.3235987]

Accountable Deep-Learning-Based Vision Systems for Preterm Infant Monitoring

Lucia Migliorelli
Co-primo
;
2023-01-01

Abstract

This work proposes an ethical framework that highlights possible ethical risks in the design and use of deep-learning-based vision systems for monitoring infants' movements in neonatal intensive care units. We discuss biases and ways to mitigate them for promoting accountable systems in clinical practice.
2023
File in questo prodotto:
File Dimensione Formato  
Migliorelli_Accountable-Deep-Learning-Based-Vision_2023.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/319131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact