Concerns about plastic pollution and its toxicity towards animals and people are growing. Polystyrene (PS) is a plastic polymer highly produced in Europe for packaging purposes and building insulation amongst others. Whatever their source-illegal dumping, improper waste management, or a lack of treatment for the removal of plastic debris from wastewater treatment plants-PS products ultimately end up in the marine environment. Nanoplastics (<1000 nm) are the new focus for plastic pollution, gaining broad interest. Whether primary or secondary, their small size permits nanoparticles to cross cellular boundaries, consequently leading to adverse toxic effects. An in vitro assay of Mytilus galloprovincialis haemocytes exposed to 10 μg/L of polystyrene nanoplastics (PS-NPs; 50 nm) for 24 h was used to test cellular viability along with the luminescence inhibition (LC50) of Aliivibrio fischeri bacteria to evaluate acute toxicity. Cellular viability of mussel haemocytes decreased significantly after a 24 h exposure and PS-NPs LC50 range from 180 to 217, μg/L. In addition, a 28-day exposure of the marine bivalve M. galloprovincialis to PS-NPs (10 μg/L; 50 nm) was performed to evaluate the neurotoxic effects and the uptake of these plastic particles in three bivalve tissues (gills, digestive gland, and gonads). The ingestion of PS-NPs was time- and tissue-specific, suggesting that PS-NPs are ingested through the gills and then translocated through the mussel bloodstream, to the digestive gland and gonads where the highest amount of ingested PS-NPs was reported. Ingested PS-NPs may compromise the digestive glands' key metabolic function and impair mussels' gametogenic and reproductive success. Data on acetylcholinesterase inhibition and those previously obtained on a wide range of cellular biomarkers were elaborated through weighted criteria providing a synthetic assessment of cellular hazard from PS-NPs.

Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis / Gonçalves, J M; Benedetti, M; D'Errico, G; Regoli, F; Bebianno, M J. - In: ENVIRONMENTAL POLLUTION. - ISSN 0269-7491. - STAMPA. - 333:(2023), p. 122104. [10.1016/j.envpol.2023.122104]

Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis

Benedetti, M;d'Errico, G;Regoli, F;
2023-01-01

Abstract

Concerns about plastic pollution and its toxicity towards animals and people are growing. Polystyrene (PS) is a plastic polymer highly produced in Europe for packaging purposes and building insulation amongst others. Whatever their source-illegal dumping, improper waste management, or a lack of treatment for the removal of plastic debris from wastewater treatment plants-PS products ultimately end up in the marine environment. Nanoplastics (<1000 nm) are the new focus for plastic pollution, gaining broad interest. Whether primary or secondary, their small size permits nanoparticles to cross cellular boundaries, consequently leading to adverse toxic effects. An in vitro assay of Mytilus galloprovincialis haemocytes exposed to 10 μg/L of polystyrene nanoplastics (PS-NPs; 50 nm) for 24 h was used to test cellular viability along with the luminescence inhibition (LC50) of Aliivibrio fischeri bacteria to evaluate acute toxicity. Cellular viability of mussel haemocytes decreased significantly after a 24 h exposure and PS-NPs LC50 range from 180 to 217, μg/L. In addition, a 28-day exposure of the marine bivalve M. galloprovincialis to PS-NPs (10 μg/L; 50 nm) was performed to evaluate the neurotoxic effects and the uptake of these plastic particles in three bivalve tissues (gills, digestive gland, and gonads). The ingestion of PS-NPs was time- and tissue-specific, suggesting that PS-NPs are ingested through the gills and then translocated through the mussel bloodstream, to the digestive gland and gonads where the highest amount of ingested PS-NPs was reported. Ingested PS-NPs may compromise the digestive glands' key metabolic function and impair mussels' gametogenic and reproductive success. Data on acetylcholinesterase inhibition and those previously obtained on a wide range of cellular biomarkers were elaborated through weighted criteria providing a synthetic assessment of cellular hazard from PS-NPs.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/318652
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 6
social impact