Biorefineries aim to maximise resource recovery from organic sources that have been traditionally considered wastes. In this respect, leftovers from mollusc and seafood processing industries can be a source of multiple bioproducts such as protein hydrolysates (PH), calcium carbonate and co-composted biochar (COMBI). This study aims to evaluate different scenarios of biorefineries fed by mollusc (MW) and fish wastes (FW) to understand which is the most convenient to maximise their profitability. Results showed that the FW-based biorefinery obtained the highest revenues with respect to the amounts of waste treated, i.e., 955.1 €·t−1 and payback period (2.9 years). However, including MW in the biorefinery showed to increase total income as a higher amount of feedstock could be supplied to the system. The profitability of the biorefineries was mainly dependent on the selling price of hydrolysates (considered as 2 €·kg−1 in this study). However, it also entailed the highest operating costs (72.5–83.8% of total OPEX). This highlights the importance of producing high-quality PH in economic and sustainable way to increase the feasibility of the biorefinery.

Techno-economic assessment of biorefinery scenarios based on mollusc and fish residuals / Andreola, Corinne; González-Camejo, Josue; Tambone, F.; Eusebi, Anna Laura; Adani, Fabrizio; Fatone, Francesco. - In: WASTE MANAGEMENT. - ISSN 0956-053X. - ELETTRONICO. - 166:(2023), pp. 294-304. [10.1016/j.wasman.2023.05.014]

Techno-economic assessment of biorefinery scenarios based on mollusc and fish residuals

Andreola Corinne;Eusebi Anna Laura;Fatone Francesco
2023-01-01

Abstract

Biorefineries aim to maximise resource recovery from organic sources that have been traditionally considered wastes. In this respect, leftovers from mollusc and seafood processing industries can be a source of multiple bioproducts such as protein hydrolysates (PH), calcium carbonate and co-composted biochar (COMBI). This study aims to evaluate different scenarios of biorefineries fed by mollusc (MW) and fish wastes (FW) to understand which is the most convenient to maximise their profitability. Results showed that the FW-based biorefinery obtained the highest revenues with respect to the amounts of waste treated, i.e., 955.1 €·t−1 and payback period (2.9 years). However, including MW in the biorefinery showed to increase total income as a higher amount of feedstock could be supplied to the system. The profitability of the biorefineries was mainly dependent on the selling price of hydrolysates (considered as 2 €·kg−1 in this study). However, it also entailed the highest operating costs (72.5–83.8% of total OPEX). This highlights the importance of producing high-quality PH in economic and sustainable way to increase the feasibility of the biorefinery.
2023
Biofertiliser; Biorefinery; Fish waste; Mollusc waste; Techno-economic assessment
File in questo prodotto:
File Dimensione Formato  
Andreola_Techno-economic-assessment-biorefinery_2023.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/316911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact