Background Prostate cancer (PCa) is one of the most common cancers worldwide and oxidative stress is involved in its occurrence, development and progression. In fact, in transgenic adenocarcinoma of mouse prostate (TRAMP) mice, prostate cancer onset is associated with the methylation of the first five CpG in the nuclear factor erythroid 2-related factor 2 (NRF2) promoter, a key regulator of oxidative stress response, leading to its downregulation and accumulation of reactive oxygen species (ROS). It has been demonstrated that both natural and synthetic compounds can reactivate NRF2 expression inhibiting the methylation status of its promoter by downregulation of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). Interestingly, NRF2 re-expression significantly reduced prostate cancer onset in TRAMP mice highlighting an important role of NRF2 in prostate tumorigenesis. Methods and results We analysed the current literature regarding the role of natural and synthetic compounds in modulating NRF2 pathway in TRAMP mice, an in vivo model of prostate cancer, to give an overview on prostate carcinogenesis and its possible prevention. Conclusion We can conclude that specific natural and synthetic compounds can downregulate DNMTs and/or HDACs inhibiting the methylation status of NRF2 promoter, then reactivating the expression of NRF2 protecting normal prostatic cells from ROS damage and tumorigenesis.

NRF2 modulation in TRAMP mice: an in vivo model of prostate cancer / Marzioni, Daniela; Mazzucchelli, Roberta; Fantone, Sonia; Tossetta, Giovanni. - In: MOLECULAR BIOLOGY REPORTS. - ISSN 1573-4978. - 50:1(2023), pp. 873-881. [10.1007/s11033-022-08052-2]

NRF2 modulation in TRAMP mice: an in vivo model of prostate cancer

Marzioni, Daniela;Mazzucchelli, Roberta;Fantone, Sonia;Tossetta, Giovanni
2023-01-01

Abstract

Background Prostate cancer (PCa) is one of the most common cancers worldwide and oxidative stress is involved in its occurrence, development and progression. In fact, in transgenic adenocarcinoma of mouse prostate (TRAMP) mice, prostate cancer onset is associated with the methylation of the first five CpG in the nuclear factor erythroid 2-related factor 2 (NRF2) promoter, a key regulator of oxidative stress response, leading to its downregulation and accumulation of reactive oxygen species (ROS). It has been demonstrated that both natural and synthetic compounds can reactivate NRF2 expression inhibiting the methylation status of its promoter by downregulation of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). Interestingly, NRF2 re-expression significantly reduced prostate cancer onset in TRAMP mice highlighting an important role of NRF2 in prostate tumorigenesis. Methods and results We analysed the current literature regarding the role of natural and synthetic compounds in modulating NRF2 pathway in TRAMP mice, an in vivo model of prostate cancer, to give an overview on prostate carcinogenesis and its possible prevention. Conclusion We can conclude that specific natural and synthetic compounds can downregulate DNMTs and/or HDACs inhibiting the methylation status of NRF2 promoter, then reactivating the expression of NRF2 protecting normal prostatic cells from ROS damage and tumorigenesis.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/316814
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 29
social impact