The aim of the present work is to utilize a new functionality within the Weather Research and Forecasting model coupled with Chemistry (WRF–Chem) that allows simulating emission, transport, and settling of pollutants released during the Etna 2015 volcanic activities. This study constitutes the first systematic application of the WRF–Chem online‐based approach to a specific Etna volcanic eruption, with possible effects involving the whole Mediterranean area. In this context, the attention has been focused on the eruption event, recorded from 3–7 December 2015, which led to the closure of the nearby Catania International Airport. Quantitative meteorological forecasts, analyses of Etna volcanic ash transport, and estimates of the ash ground deposition have been performed. In order to test the performance of the proposed approach, the model outputs have been compared with data provided by satellite sensors and Doppler radars. As a result, it emerges that, as far as the selected eruption event is concerned, the WRF–Chem model reasonably reproduces the distribution of SO2 and of volcanic ash. In addition, this modeling system may provide valuable support both to airport management and to local stakeholders including public administrations.

Analysis of the ETNA 2015 Eruption Using WRF–Chem Model and Satellite Observations / Rizza, Umberto; Brega, Eleonora; Teresa Caccamo, Maria; Castorina, Giuseppe; Morichetti, Mauro; Munaò, Gianmarco; Passerini, Giorgio; Magazù, Salvatore. - In: ATMOSPHERE. - ISSN 2073-4433. - ELETTRONICO. - 11:11(2020). [10.3390/atmos11111168]

Analysis of the ETNA 2015 Eruption Using WRF–Chem Model and Satellite Observations

Mauro Morichetti;Giorgio Passerini;
2020-01-01

Abstract

The aim of the present work is to utilize a new functionality within the Weather Research and Forecasting model coupled with Chemistry (WRF–Chem) that allows simulating emission, transport, and settling of pollutants released during the Etna 2015 volcanic activities. This study constitutes the first systematic application of the WRF–Chem online‐based approach to a specific Etna volcanic eruption, with possible effects involving the whole Mediterranean area. In this context, the attention has been focused on the eruption event, recorded from 3–7 December 2015, which led to the closure of the nearby Catania International Airport. Quantitative meteorological forecasts, analyses of Etna volcanic ash transport, and estimates of the ash ground deposition have been performed. In order to test the performance of the proposed approach, the model outputs have been compared with data provided by satellite sensors and Doppler radars. As a result, it emerges that, as far as the selected eruption event is concerned, the WRF–Chem model reasonably reproduces the distribution of SO2 and of volcanic ash. In addition, this modeling system may provide valuable support both to airport management and to local stakeholders including public administrations.
2020
File in questo prodotto:
File Dimensione Formato  
atmosphere-11-01168-v2.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 9.54 MB
Formato Adobe PDF
9.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/316772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact