The need to reduce harmful emissions into the atmosphere requires reducing the weight of vehicles (cars, trains, planes,…); this need is driving research towards the development of structures characterized by high values of specific strength and specific stiffness. A technological solution that allows the achievement of this goal is represented by the Isogrid lattice structures. These structures, patented by McDonnell Douglas, consist of a thin metal sheet (skin) to which a lattice structure is fixed, made up of a set of equilateral triangles to obtain the necessary stiffening. In last years, metal alloys have been replaced by fiber reinforced composites materials. This solution entailed a further increase in the specific properties of the structures, unfortunately with consequent increases in costs and greater construction complexity. Furthermore, at the nodal points of the structure, an increase in the thickness of the rib occurs, due to the overlapping of the reinforcing layers with consequent undesired bending of the fibers. In the present thesis, the Isogrid structures have been produced using additive manufacturing technology, by means of the deposition of layers of composite material consisting of a polyamide matrix reinforced with short carbon fibers (Carbon PA); the aim of the work was to obtain lattice structures without the typical problems related to the manufacturing of structures with long fibers. A preliminary study allowed studying the mechanical properties of the material for the realization of the structures; in this regard, tensile samples were made in Carbon PA using the Fused Filament Fabrication (FFF) technology also used to manufacture of Isogrid structure. Then, the finite element simulation (FEM) of the Isogrid structures was conducted, using the Siemens NX software, in order to define the geometric characteristics of the structures; this study made it possible to investigate the relationship between the geometry of the structures and their resistance to buckling. The results of the FEM simulations, in terms of geometry of the structure, were used as input for the fabrication of the structures using the FFF technology; in this regard, layers of Carbon PA have been deposited on the printing plate. Some structures were used in the as printed condition, while the others were dried in an oven in order to evaluate the effect of moisture content on the buckling resistance of the Isogrid structures.All structures were subjected to buckling tests using the universal testing machine equipped with flat, parallel and smooth plates; the tests allowed to measure the breaking force of the structure. Some structures were subjected to scanning electron microscopy (SEM) with the aim of defining the fracture mechanisms. Finally, a LCA analysis of the manufacturing process of the Isogrid structures was conducted to evaluate the effects of the geometry and the moisture content on the environmental impacts. The results provided by the study showed that Isogrid structures represent a valid alternative to traditional solid structures in the realization of structural parts with high specific properties. The geometry of the structures significantly influences the specific buckling strength and the failure modes of the structure. The moisture content of the material also influences the buckling behavior of the lattice structure. The comparison between the FEM simulations and the experimental buckling tests showed an excellent agreement, demonstrating the validity of the data entered as input into the FEM software. Finally, the LCA analysis showed that the environmental impact of the production process must be related to the specific resistance of the structure.
La necessità di ridurre le emissioni in atmosfera richiede la riduzione del peso dei veicoli (auto, treni, aerei,…); tale esigenza sta spingendo la ricerca verso lo sviluppo di strutture caratterizzate da valori elevati di resistenza e rigidezza specifica. Una soluzione tecnologica che consente di raggiungere tale obiettivo è rappresentata dalle strutture reticolari Isogrid. Tali strutture sono composte da una piastra metallica sottile a cui è fissata una struttura reticolare, costituita da un insieme di triangoli equilateri per ottenere il necessario irrigidimento. Nel corso degli anni le leghe metalliche sono state sostituite dai compositi rinforzati con fibre lunghe di carbonio o con altri materiali. Tale soluzione ha comportato un ulteriore incremento delle proprietà specifiche delle strutture a discapito di un incremento dei costi e di una maggiore complessità costruttiva. Inoltre, nei punti nodali della struttura si registra un aumento dello spessore della costola a causa della sovrapposizione degli strati di rinforzo con conseguente piegatura indesiderata delle fibre. Nella presente tesi le strutture Isogrid sono state realizzate con tecnologia additiva deponendo strati di materiale composito costituito da una matrice in poliammide rinforzata con fibre corte di carbonio (Carbon PA); l’obiettivo è stato quello di ottenere strutture che permettessero di ovviare ai problemi costruttivi tipici riscontrati nella realizzazione delle strutture con fibre lunghe. Preliminarmente, è stato eseguito uno studio sulle proprietà meccaniche del materiale; a tal proposito, sono stati realizzati provini in Carbon PA, mediante la tecnologia della Fused Filament Fabrication (FFF) utilizzata anche nella fabbricazione delle strutture Isogrid, sottoposti alla prova di trazione monoassiale mediante macchina di prova universale. Lo step successivo ha riguardato la simulazione agli elementi finiti (FEM) delle Isogrid, mediante il software Siemens NX, allo scopo di definire le caratteristiche geometriche delle strutture; tale studio ha consentito di mostrare la relazione tra geometria delle strutture e resistenza al buckling delle stesse. I risultati delle simulazioni FEM, in termini di geometria della struttura, sono stati utilizzati come input nella costruzione delle strutture con la tecnologia FFF; a tal riguardo, sono stati depositati sul piatto di stampa strati di Carbon PA. Una parte delle strutture è stata utilizzata nella condizione as printed mentre le altre hanno subito un trattamento di essicazione in forno al fine di valutare l’effetto dell’umidità sulla resistenza al buckling delle Isogrid. Tutte le strutture sono state sottoposte a prove di buckling utilizzando la macchina universale di prova attrezzata con piastre piane, parallele e lisce; le prove hanno consentito di misurare la forza a rottura della struttura. Alcune strutture sono state sottoposte a microspia elettronica a scansione (SEM) con l’obiettivo di definire i meccanismi di frattura. Infine, è stata condotta un’analisi LCA del processo di realizzazione delle strutture Isogrid per valutare gli effetti della geometria e del processo di essiccazione sugli impatti ambientali. I risultati forniti dallo studio hanno mostrato come le Isogrid rappresentino una valida alternativa alle tradizionali strutture piene nella realizzazione di parti strutturali con elevate proprietà specifiche. La geometria delle strutture influenza significativamente la resistenza specifica al buckling e i modi rottura della struttura. Anche il grado di umidità del materiale influenza il comportamento al buckling della struttura reticolare. Il confronto tra le simulazioni e le prove sperimentali di buckling evidenzia un eccellente accordo dimostrando la bontà dei dati inseriti nel software FEM. Infine, l’analisi LCA ha mostrato come l’impatto ambientale del processo produttivo sia da mettere in relazione con la resistenza specifica della struttura.
Studio di strutture Isogrid in materiale composito ottenute mediante processo di stampa 3D / Greco, Luciano. - (2023 May 30).
Studio di strutture Isogrid in materiale composito ottenute mediante processo di stampa 3D
GRECO, Luciano
2023-05-30
Abstract
The need to reduce harmful emissions into the atmosphere requires reducing the weight of vehicles (cars, trains, planes,…); this need is driving research towards the development of structures characterized by high values of specific strength and specific stiffness. A technological solution that allows the achievement of this goal is represented by the Isogrid lattice structures. These structures, patented by McDonnell Douglas, consist of a thin metal sheet (skin) to which a lattice structure is fixed, made up of a set of equilateral triangles to obtain the necessary stiffening. In last years, metal alloys have been replaced by fiber reinforced composites materials. This solution entailed a further increase in the specific properties of the structures, unfortunately with consequent increases in costs and greater construction complexity. Furthermore, at the nodal points of the structure, an increase in the thickness of the rib occurs, due to the overlapping of the reinforcing layers with consequent undesired bending of the fibers. In the present thesis, the Isogrid structures have been produced using additive manufacturing technology, by means of the deposition of layers of composite material consisting of a polyamide matrix reinforced with short carbon fibers (Carbon PA); the aim of the work was to obtain lattice structures without the typical problems related to the manufacturing of structures with long fibers. A preliminary study allowed studying the mechanical properties of the material for the realization of the structures; in this regard, tensile samples were made in Carbon PA using the Fused Filament Fabrication (FFF) technology also used to manufacture of Isogrid structure. Then, the finite element simulation (FEM) of the Isogrid structures was conducted, using the Siemens NX software, in order to define the geometric characteristics of the structures; this study made it possible to investigate the relationship between the geometry of the structures and their resistance to buckling. The results of the FEM simulations, in terms of geometry of the structure, were used as input for the fabrication of the structures using the FFF technology; in this regard, layers of Carbon PA have been deposited on the printing plate. Some structures were used in the as printed condition, while the others were dried in an oven in order to evaluate the effect of moisture content on the buckling resistance of the Isogrid structures.All structures were subjected to buckling tests using the universal testing machine equipped with flat, parallel and smooth plates; the tests allowed to measure the breaking force of the structure. Some structures were subjected to scanning electron microscopy (SEM) with the aim of defining the fracture mechanisms. Finally, a LCA analysis of the manufacturing process of the Isogrid structures was conducted to evaluate the effects of the geometry and the moisture content on the environmental impacts. The results provided by the study showed that Isogrid structures represent a valid alternative to traditional solid structures in the realization of structural parts with high specific properties. The geometry of the structures significantly influences the specific buckling strength and the failure modes of the structure. The moisture content of the material also influences the buckling behavior of the lattice structure. The comparison between the FEM simulations and the experimental buckling tests showed an excellent agreement, demonstrating the validity of the data entered as input into the FEM software. Finally, the LCA analysis showed that the environmental impact of the production process must be related to the specific resistance of the structure.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Greco.pdf
accesso aperto
Descrizione: Tesi_Greco
Tipologia:
Tesi di dottorato
Licenza d'uso:
Creative commons
Dimensione
5.52 MB
Formato
Adobe PDF
|
5.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.