Precision agriculture PA is a new concept adopted worldwide. Precision farming methods use large amounts of data and information to improve agricultural resource use and crop quality. In essence, PA is the science of improving agriculture sustainability by assisting farmers' decisions using high-tech sensors and analytical tools. The main PA technology solutions available today belong to remote and proximal sensing fields. Among them, Lidar (light detection and ranging) and stereoscopic vision systems are used for the three-dimensional modelling of plant elements (3D models, point clouds, meshes, etc.). Regarding the latter, most studies are in forestry, while the use of 3D modelling systems has a broad scope for study and application in permanent crops. As we will see in the following paragraphs, the doctoral work focused on agricultural systems for olive cultivation. Above all because focusing on the olive sector has a twofold significance. On the one hand, it allows us to test the potential of PA in a crucial sector from the production point of view of permanent crops. On the other, to test the seminal contribution of PA from the ecological and landscape point of view. This approach of the work allows us to seek to have an impact in the promising field of farming technological innovation. Therefore, the PhD project focuses on three main lines of research. The first line of research aims to demonstrate the high accuracy of metric data extracted from single tree tests by model reconstruction starting from point clouds sampled through a Mobile Laser Scanner Lidar (MLS) device. The second line of research focuses on the Mobile Laser Scanner survey of tree structures in specialised olive groves by applying different tree classification and canopy mashing algorithms to derive the volume of individual canopies with high accuracy. The analysis is conducted by comparing the volumes obtained from the MLS survey with two ground truths or primitives (toroidal and paraboloid shapes). The third line of research focused on landscape analysis inside a case study in central Italy (PDO Cartoceto). The landscape analysis is conducted by adopting different approaches of diachronic analysis of land use changes and landscape metrics. The analysis uses a robust multi-temporal dataset (orthophoto maps, historical maps, aerial images, etc.) to reconstruct the land use for five periods over more than 70 years in a GIS environment. The dataset allowed for identifying the different types of olive grove cropping patterns within the investigated area. Further, the landscape transformations have been analysed by measuring a pool of landscape metrics (diversity, entropy, shape, frequency, etc.) to provide a clear view of the dynamics of change that occurred in those areas. The overall results achieved in the development of these three lines of research appear very satisfactory. They, therefore, represent a significant stimulus for both individual olive growers and the associative structures that manage the local olive sector, particularly the Cartoceto DOP extra virgin olive oil production consortium, to introduce innovative practices based on the use of advanced digital technologies in the agricultural sector.
L'agricoltura di precisione (AP) rappresenta un nuovo modo di impiegare la tecnologia digitale per rendere l'agricoltura più efficiente e produttiva utilizzando dati accurati. Le principali soluzioni tecnologiche di PA oggi disponibili appartengono ai campi del telerilevamento e del rilevamento prossimale. Tra queste, l'uso dei sistemi Lidar (light detection and ranging) e di visione stereoscopica sono utilizzati per la modellazione tridimensionale degli elementi vegetali (modelli 3D, point clouds, mesh, etc.). In merito a quest'ultimo aspetto la maggior parte degli studi è in ambito forestale, mentre l'utilizzo dei sistemi modellazione 3D presenta ampi spazi di studio e applicazione nel settore delle colture permanenti. Come vedremo in successivamente, il lavoro di dottorato si è concentrato su sistemi agricoli per la coltivazione dell'olivo. In particolare perché concentrarsi sul settore olivicolo ci permette di testare le potenzialità della PA in un settore cruciale non solo dal punto di vista produttivo delle culture permanenti, ma anche ecologico e paesaggistico. Questo approccio del lavoro ci permette di avere impatto in un promettente campo di innovazione tecnologica. Pertanto, il progetto di dottorato si concentra su tre linee di ricerca principali. La prima linea di ricerca mira a dimostrare l'elevata accuratezza dei dati metrici estratti da test su singoli alberi mediante ricostruzione del modello a partire da nuvole di punti campionati attraverso un dispositivo Mobile Laser Scanner Lidar (MLS). La seconda linea di ricerca si concentra sul rilevamento con Laser Scanner Mobile delle strutture arboree in oliveti specializzati. Applicando diversi algoritmi di classificazione degli alberi e di mashing delle chiome per derivare il volume di singole chiome con elevata precisione. L'analisi è condotta confrontando i volumi ottenuti dal rilievo MLS con due verità a terra o primitive (forme toroidali e paraboloidi). La terza e linea di ricerca si è concentrata sull'analisi del paesaggio all'interno in un caso di studio in centro Italia (DOP Cartoceto). L'analisi del paesaggio è condotta adottando diversi approcci di analisi diacronica dei cambiamenti di uso del suolo e metriche del paesaggio. Per l'analisi è stato necessario costruire un robusto dataset multi temporale (ortofoto aeree, carte storiche, etc.). In particolare è stato possibile ricostruire lo stato di uso del suolo per cinque periodi nell'arco di oltre 70 anni, in ambiente GIS, individuando le diverse tipologie di modelli colturali di oliveto all'interno del territorio indagato. Successivamente è stato possibile misurare un pool di metriche del paesaggio (diversità, entropia, forma, frequenza, etc.) per analizzare le trasformazioni del paesaggio fornendo una chiara visione delle dinamiche di cambiamento avvenute in quelle aree. I risultati complessivi conseguiti nello sviluppo di queste tre linee di ricerca appaiono molto soddisfacenti. Essi rappresentano quindi un significativo stimolo sia per i singoli olivicoltori sia per le strutture associative che gestiscono il comparto olivicolo locale, in particolare il consorzio di produzione dell’olio extravergine di oliva di Cartoceto DOP, per introdurre pratiche innovative fondate sull’utilizzo di tecnologie digitali avanzate all’interno di questo importante comparto agricolo.
Precision agriculture by proximal and remote sensing: from the 3D modelling and tree metrics computation to the analysis of rural landscape / Chiappini, Stefano. - (2023 Jun 14).
Precision agriculture by proximal and remote sensing: from the 3D modelling and tree metrics computation to the analysis of rural landscape
CHIAPPINI, STEFANO
2023-06-14
Abstract
Precision agriculture PA is a new concept adopted worldwide. Precision farming methods use large amounts of data and information to improve agricultural resource use and crop quality. In essence, PA is the science of improving agriculture sustainability by assisting farmers' decisions using high-tech sensors and analytical tools. The main PA technology solutions available today belong to remote and proximal sensing fields. Among them, Lidar (light detection and ranging) and stereoscopic vision systems are used for the three-dimensional modelling of plant elements (3D models, point clouds, meshes, etc.). Regarding the latter, most studies are in forestry, while the use of 3D modelling systems has a broad scope for study and application in permanent crops. As we will see in the following paragraphs, the doctoral work focused on agricultural systems for olive cultivation. Above all because focusing on the olive sector has a twofold significance. On the one hand, it allows us to test the potential of PA in a crucial sector from the production point of view of permanent crops. On the other, to test the seminal contribution of PA from the ecological and landscape point of view. This approach of the work allows us to seek to have an impact in the promising field of farming technological innovation. Therefore, the PhD project focuses on three main lines of research. The first line of research aims to demonstrate the high accuracy of metric data extracted from single tree tests by model reconstruction starting from point clouds sampled through a Mobile Laser Scanner Lidar (MLS) device. The second line of research focuses on the Mobile Laser Scanner survey of tree structures in specialised olive groves by applying different tree classification and canopy mashing algorithms to derive the volume of individual canopies with high accuracy. The analysis is conducted by comparing the volumes obtained from the MLS survey with two ground truths or primitives (toroidal and paraboloid shapes). The third line of research focused on landscape analysis inside a case study in central Italy (PDO Cartoceto). The landscape analysis is conducted by adopting different approaches of diachronic analysis of land use changes and landscape metrics. The analysis uses a robust multi-temporal dataset (orthophoto maps, historical maps, aerial images, etc.) to reconstruct the land use for five periods over more than 70 years in a GIS environment. The dataset allowed for identifying the different types of olive grove cropping patterns within the investigated area. Further, the landscape transformations have been analysed by measuring a pool of landscape metrics (diversity, entropy, shape, frequency, etc.) to provide a clear view of the dynamics of change that occurred in those areas. The overall results achieved in the development of these three lines of research appear very satisfactory. They, therefore, represent a significant stimulus for both individual olive growers and the associative structures that manage the local olive sector, particularly the Cartoceto DOP extra virgin olive oil production consortium, to introduce innovative practices based on the use of advanced digital technologies in the agricultural sector.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Chiappini.pdf
Open Access dal 15/12/2024
Descrizione: Tesi_Chiappini
Tipologia:
Tesi di dottorato
Licenza d'uso:
Tutti i diritti riservati
Dimensione
4.11 MB
Formato
Adobe PDF
|
4.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.