This paper deals with modelling strategies for the updating of Finite Element Models (FEMs) of infilled Reinforced Concrete (RC) frame buildings. As is known, this building typology is the most adopted worldwide for residential houses and strategic buildings, such as hospitals, schools, police stations, etc. The importance of achieving trustworthy numerical models for these kinds of structures, especially the latter ones, is clear. The updating procedure mainly consists in changing the geometrical and mechanical material properties of models until pre-determined convergence criteria are verified, the latter based on the comparison between numerical and experimental outcomes. In this work, the modelling strategies that can be adopted to refine FEMs of infilled RC buildings are treated in-depth, starting from the simple model usually developed for design purposes. Modelling techniques relevant to the geometry, the mechanical properties, the mass, and the restraint conditions of the model are discussed. Moreover, the approaches that can be adopted to calibrate numerical models during the construction process are addressed as well. Then, an application of the proposed strategies is provided with reference to a real building that was investigated during its construction. The proposed modelling strategies proved to be effective in the model updating of the considered building and provide useful support for the calibration of FEMs of this building typology in general.
Modelling Strategies for the Updating of Infilled RC Building FEMs Considering the Construction Phases / Nicoletti, V.; Gara, F.. - In: BUILDINGS. - ISSN 2075-5309. - 13:3(2023), p. 598. [10.3390/buildings13030598]
Modelling Strategies for the Updating of Infilled RC Building FEMs Considering the Construction Phases
Nicoletti V.;Gara F.
2023-01-01
Abstract
This paper deals with modelling strategies for the updating of Finite Element Models (FEMs) of infilled Reinforced Concrete (RC) frame buildings. As is known, this building typology is the most adopted worldwide for residential houses and strategic buildings, such as hospitals, schools, police stations, etc. The importance of achieving trustworthy numerical models for these kinds of structures, especially the latter ones, is clear. The updating procedure mainly consists in changing the geometrical and mechanical material properties of models until pre-determined convergence criteria are verified, the latter based on the comparison between numerical and experimental outcomes. In this work, the modelling strategies that can be adopted to refine FEMs of infilled RC buildings are treated in-depth, starting from the simple model usually developed for design purposes. Modelling techniques relevant to the geometry, the mechanical properties, the mass, and the restraint conditions of the model are discussed. Moreover, the approaches that can be adopted to calibrate numerical models during the construction process are addressed as well. Then, an application of the proposed strategies is provided with reference to a real building that was investigated during its construction. The proposed modelling strategies proved to be effective in the model updating of the considered building and provide useful support for the calibration of FEMs of this building typology in general.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.