Artificial Neural Networks (ANNs) are an effective data-driven approach to model chaotic dynamics. Although ANNs are universal approximators which easily incorporate mathematical structure, physical information and constrains, they are scarcely interpretable. Here we develop a neural network framework in which the chaotic dynamics is reframed into piecewise models. The discontinuous formulation defines switching laws representative of the bifurcations mecha- nisms, providing to recover the system of differential equations and its primitive (or integral) which describe the chaotic regime.

Piecewise integrable neural network: An interpretable chaos identification framework / Novelli, N.; Belardinelli, P.; Lenci, S.. - In: CHAOS. - ISSN 1054-1500. - STAMPA. - 33:2(2023). [10.1063/5.0134984]

Piecewise integrable neural network: An interpretable chaos identification framework

Novelli N.
;
Belardinelli P.;Lenci S.
2023-01-01

Abstract

Artificial Neural Networks (ANNs) are an effective data-driven approach to model chaotic dynamics. Although ANNs are universal approximators which easily incorporate mathematical structure, physical information and constrains, they are scarcely interpretable. Here we develop a neural network framework in which the chaotic dynamics is reframed into piecewise models. The discontinuous formulation defines switching laws representative of the bifurcations mecha- nisms, providing to recover the system of differential equations and its primitive (or integral) which describe the chaotic regime.
2023
File in questo prodotto:
File Dimensione Formato  
PWI_NN_chaos_journal_rev1.pdf

Open Access dal 03/02/2025

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Licenza specifica dell'editore
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/311975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact