We show that adsorption of dye molecules control the light-induced alignment of dye-doped nematic liquid crystal (LC) on a nonphotosensitive polymer surface. The dependencies of light-induced twist structures on exposure, thermal baking, thickness, and aging before irradiation of the LC cells allowed us to propose the following mechanism for the alignment. Before irradiation, the "dark"-adsorbed layer on the tested surface is formed from dye molecules predominantly aligned along the initial direction of the director. Irradiation of the cell with linearly polarized light produces an additional layer with different orientational ordering of dye molecules. The final easy axis is determined by the competition of "dark" and light-induced contributions to anchoring and is aligned between the "dark" easy axes and polarization of the light. For quantitative interpretation, we apply the tensor model of anchoring and assume that the photoalignment in the mesophase is a cumulative effect of the light-induced anchoring on the background of the already existing anisotropic "dark" dye layer.

Photo-orientation of liquid crystals due to light-induced desorption and adsorption of dye molecules on an aligning surface / E., Ouskova; Reznikov, Y. U.; S. V., Shiyanovskii; L., Su; J. L., West; O. V., Kuksenok; Francescangeli, Oriano; Simoni, Francesco. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 64 (5):(2001), pp. 051709/1-051709/5. [10.1103/PhysRevE.64.051709]

Photo-orientation of liquid crystals due to light-induced desorption and adsorption of dye molecules on an aligning surface

FRANCESCANGELI, ORIANO;SIMONI, Francesco
2001-01-01

Abstract

We show that adsorption of dye molecules control the light-induced alignment of dye-doped nematic liquid crystal (LC) on a nonphotosensitive polymer surface. The dependencies of light-induced twist structures on exposure, thermal baking, thickness, and aging before irradiation of the LC cells allowed us to propose the following mechanism for the alignment. Before irradiation, the "dark"-adsorbed layer on the tested surface is formed from dye molecules predominantly aligned along the initial direction of the director. Irradiation of the cell with linearly polarized light produces an additional layer with different orientational ordering of dye molecules. The final easy axis is determined by the competition of "dark" and light-induced contributions to anchoring and is aligned between the "dark" easy axes and polarization of the light. For quantitative interpretation, we apply the tensor model of anchoring and assume that the photoalignment in the mesophase is a cumulative effect of the light-induced anchoring on the background of the already existing anisotropic "dark" dye layer.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/31192
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 74
social impact