High performance next-generation nanomaterials (NMs) are much desired; however, the existing synthesis procedures are costly, complicated, and unsustainable. Robust consumption of natural resources, use of hazardous synthetic reagents and environmentally harmful synthesis methods are the main concerns which demand safer-by-design methods. Most importantly, following UN Sustainable Development Goals – SDGs, it is worthwhile to implement sustainable nanosynthesis (SNS) approach. A step forward, a much efficient way could be the concept of from waste – to treat waste which was actively followed in the current dissertation. High performance next-generation NMs were obtained through heterogenous waste valorization and include a)- mutated graphene like NMs b)- pure anatase TiO2-NMs c)- polycrystalline TiO2-NMs d)- non-metal-doped thermostable anatase TiO2-NMs e)- nanocellulose f)- nanocomposites (NC) by combining nanocellulose and TiO2-NMs or reduce graphene oxide (rGO). Operando monitoring of a room temperature nanocomposite (TiO2@rGO-NC) methanol sensor demonstrated that the sensing mechanism of the nanocomposite relies on the combined effect of methanol reversible physisorption and irreversible chemisorption, sensor modification over time, and electron/O2 depletion-restoration due to a surface electrochemical reaction forming CO2 and H2O. Moreover, green synthesized (GS) TiO2-NMs have demonstrated rapid removal of organic pollutants (Crystal Violet, Methyl Violet) from wastewater through surface adsorption and photocatalysis as well as photocatalytic (NO)x degradation under UV and visible-light respectively, 70% higher than that of two commercial grade TiO2-NMs. Additionally, non-metal-doped TiO2-NMs, when added to water-based paint, were able to achieve 99% removal of surface adsorbed pollutants under UV and natural sunlight, paralleled by excellent stability in a paint formulation.

I nanomateriali di nuova generazione (NM) ad alte prestazioni sono molto desiderati; tuttavia, le procedure di sintesi esistenti sono costose, complicate e insostenibili. Il forte consumo di risorse naturali, l'uso di reagenti sintetici pericolosi e i metodi di sintesi dannosi per l'ambiente sono le principali preoccupazioni che richiedono metodi di progettazione più sicuri. Soprattutto, seguendo gli Obiettivi per lo Sviluppo Sostenibile (SDG) delle Nazioni Unite, vale la pena implementare un approccio di nanosintesi sostenibile (SNS). Un passo avanti, un modo molto efficiente potrebbe essere il concetto "dal rifiuto - al trattare il rifiuto", che è stato seguito attivamente nella presente tesi di laurea. I NM di nuova generazione ad alte prestazioni sono stati ottenuti attraverso la valorizzazione di rifiuti eterogenei e comprendono a)- grafene mutato come NM b)- TiO2-NM anatasio puro c)- TiO2-NM policristallino d)- TiO2-NM anatasio termostabile non drogato con metalli e)- nanocellulosa f)- nanocompositi (NC) combinando nanocellulosa e TiO2-NM o ossido di grafene ridotto (rGO). Il monitoraggio operando di un sensore di metanolo a temperatura ambiente in nanocomposito (TiO2@rGO-NC) ha dimostrato che il meccanismo di rilevamento del nanocomposito si basa sull'effetto combinato dell' assorbimento fisico reversibile del metanolo e del chemi-assorbimento irreversibile, sulla modifica del sensore nel tempo, e sulla deplezione/ripristino di elettroni/O2 a causa di una reazione elettrochimica superficiale che forma CO2 e H2O. Inoltre, i TiO2-NMs di sintesi green (GS) hanno dimostrato una rapida rimozione degli inquinanti organici (Crystal Violet, Methyl Violet) dalle acque reflue attraverso l'adsorbimento superficiale e la fotocatalisi, nonché la degradazione fotocatalitica (NO)x sotto luce UV e visibile, rispettivamente, superiore del 70% rispetto a quella di due TiO2-NMs di grado commerciale. Inoltre, i TiO2-NM non drogati con metalli, aggiunti a vernici a base d'acqua, sono stati in grado di ottenere una rimozione del 99% degli inquinanti adsorbiti in superficie sotto i raggi UV e la luce naturale del sole, insieme a un'eccellente stabilità nella formulazione di una vernice.

Next-generation nanomaterials for environmental applications through the advanced green chemistry approach / Maqbool, Qaisar. - (2023 Mar 23).

Next-generation nanomaterials for environmental applications through the advanced green chemistry approach

MAQBOOL, QAISAR
2023-03-23

Abstract

High performance next-generation nanomaterials (NMs) are much desired; however, the existing synthesis procedures are costly, complicated, and unsustainable. Robust consumption of natural resources, use of hazardous synthetic reagents and environmentally harmful synthesis methods are the main concerns which demand safer-by-design methods. Most importantly, following UN Sustainable Development Goals – SDGs, it is worthwhile to implement sustainable nanosynthesis (SNS) approach. A step forward, a much efficient way could be the concept of from waste – to treat waste which was actively followed in the current dissertation. High performance next-generation NMs were obtained through heterogenous waste valorization and include a)- mutated graphene like NMs b)- pure anatase TiO2-NMs c)- polycrystalline TiO2-NMs d)- non-metal-doped thermostable anatase TiO2-NMs e)- nanocellulose f)- nanocomposites (NC) by combining nanocellulose and TiO2-NMs or reduce graphene oxide (rGO). Operando monitoring of a room temperature nanocomposite (TiO2@rGO-NC) methanol sensor demonstrated that the sensing mechanism of the nanocomposite relies on the combined effect of methanol reversible physisorption and irreversible chemisorption, sensor modification over time, and electron/O2 depletion-restoration due to a surface electrochemical reaction forming CO2 and H2O. Moreover, green synthesized (GS) TiO2-NMs have demonstrated rapid removal of organic pollutants (Crystal Violet, Methyl Violet) from wastewater through surface adsorption and photocatalysis as well as photocatalytic (NO)x degradation under UV and visible-light respectively, 70% higher than that of two commercial grade TiO2-NMs. Additionally, non-metal-doped TiO2-NMs, when added to water-based paint, were able to achieve 99% removal of surface adsorbed pollutants under UV and natural sunlight, paralleled by excellent stability in a paint formulation.
23-mar-2023
I nanomateriali di nuova generazione (NM) ad alte prestazioni sono molto desiderati; tuttavia, le procedure di sintesi esistenti sono costose, complicate e insostenibili. Il forte consumo di risorse naturali, l'uso di reagenti sintetici pericolosi e i metodi di sintesi dannosi per l'ambiente sono le principali preoccupazioni che richiedono metodi di progettazione più sicuri. Soprattutto, seguendo gli Obiettivi per lo Sviluppo Sostenibile (SDG) delle Nazioni Unite, vale la pena implementare un approccio di nanosintesi sostenibile (SNS). Un passo avanti, un modo molto efficiente potrebbe essere il concetto "dal rifiuto - al trattare il rifiuto", che è stato seguito attivamente nella presente tesi di laurea. I NM di nuova generazione ad alte prestazioni sono stati ottenuti attraverso la valorizzazione di rifiuti eterogenei e comprendono a)- grafene mutato come NM b)- TiO2-NM anatasio puro c)- TiO2-NM policristallino d)- TiO2-NM anatasio termostabile non drogato con metalli e)- nanocellulosa f)- nanocompositi (NC) combinando nanocellulosa e TiO2-NM o ossido di grafene ridotto (rGO). Il monitoraggio operando di un sensore di metanolo a temperatura ambiente in nanocomposito (TiO2@rGO-NC) ha dimostrato che il meccanismo di rilevamento del nanocomposito si basa sull'effetto combinato dell' assorbimento fisico reversibile del metanolo e del chemi-assorbimento irreversibile, sulla modifica del sensore nel tempo, e sulla deplezione/ripristino di elettroni/O2 a causa di una reazione elettrochimica superficiale che forma CO2 e H2O. Inoltre, i TiO2-NMs di sintesi green (GS) hanno dimostrato una rapida rimozione degli inquinanti organici (Crystal Violet, Methyl Violet) dalle acque reflue attraverso l'adsorbimento superficiale e la fotocatalisi, nonché la degradazione fotocatalitica (NO)x sotto luce UV e visibile, rispettivamente, superiore del 70% rispetto a quella di due TiO2-NMs di grado commerciale. Inoltre, i TiO2-NM non drogati con metalli, aggiunti a vernici a base d'acqua, sono stati in grado di ottenere una rimozione del 99% degli inquinanti adsorbiti in superficie sotto i raggi UV e la luce naturale del sole, insieme a un'eccellente stabilità nella formulazione di una vernice.
Green synthesis; photocatalysis; waste valorization; nanotechnology
sintesi green; fotocatalisi; valorizzazione di rifiuti; nanotecnologia
File in questo prodotto:
File Dimensione Formato  
Tesi_Maqbool.pdf

accesso aperto

Descrizione: Tesi_Maqbool
Tipologia: Tesi di dottorato
Licenza d'uso: Creative commons
Dimensione 56.97 MB
Formato Adobe PDF
56.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/311049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact