In this paper the actual dynamic behavior of the civic Clock tower of Rotella, a little village in central Italy heavily damaged by the recent 2016 seismic sequence, is thoroughly investigated by means of a detailed numerical model built and calibrated using the experimental modal properties obtained through Ambient Vibration Tests. The goal is to update the uncertain parameters of two behavioral material models applied to the Finite Element Model (elastic moduli, mass densities, constraints, and boundary conditions) to minimize the discrepancy between experimental and numerical dynamic features. A sensitivity analysis was performed with the definition of a metamodel to reduce the computational strain and try to define the necessary parameters to use for the calibration process. Due to the high nonlinear dependency of the objective function of this optimization problem on the parameters, and the likely possibility to get trapped in local minima, a machine learning approach was meant. A fully automated Finite Element Model updating procedure based on genetic algorithms and global optimization is used, leading to tower uncertain parameters identification. The results allowed to create a reference numerical replica of the structure in its actual health state and to assess its dynamic performances allowing better control over their future evolution.

Evolutionary numerical model for cultural heritage structures via genetic algorithms: a case study in central Italy / Salachoris, Georgios Panagiotis; Standoli, Gianluca; Betti, Michele; Milani, Gabriele; Clementi, Francesco. - In: BULLETIN OF EARTHQUAKE ENGINEERING. - ISSN 1570-761X. - STAMPA. - 22:7(2024), pp. 3591-3625. [10.1007/s10518-023-01615-z]

Evolutionary numerical model for cultural heritage structures via genetic algorithms: a case study in central Italy

Salachoris, Georgios Panagiotis
Membro del Collaboration Group
;
Standoli, Gianluca
Membro del Collaboration Group
;
Clementi, Francesco
Membro del Collaboration Group
2024-01-01

Abstract

In this paper the actual dynamic behavior of the civic Clock tower of Rotella, a little village in central Italy heavily damaged by the recent 2016 seismic sequence, is thoroughly investigated by means of a detailed numerical model built and calibrated using the experimental modal properties obtained through Ambient Vibration Tests. The goal is to update the uncertain parameters of two behavioral material models applied to the Finite Element Model (elastic moduli, mass densities, constraints, and boundary conditions) to minimize the discrepancy between experimental and numerical dynamic features. A sensitivity analysis was performed with the definition of a metamodel to reduce the computational strain and try to define the necessary parameters to use for the calibration process. Due to the high nonlinear dependency of the objective function of this optimization problem on the parameters, and the likely possibility to get trapped in local minima, a machine learning approach was meant. A fully automated Finite Element Model updating procedure based on genetic algorithms and global optimization is used, leading to tower uncertain parameters identification. The results allowed to create a reference numerical replica of the structure in its actual health state and to assess its dynamic performances allowing better control over their future evolution.
2024
File in questo prodotto:
File Dimensione Formato  
Salachoris_Evolutionary-numerical-model-cultural-heritage_Post-print-2024.pdf

Solo gestori archivio

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Tutti i diritti riservati
Dimensione 4.04 MB
Formato Adobe PDF
4.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Salachoris_Evolutionary-numerical-model-cultural-heritage_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 3.92 MB
Formato Adobe PDF
3.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/310488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact