A study is made of algebraic curves and surfaces in the flag manifold F=SU(3)/T^2, and their configuration relative to the twistor projection π from F to the complex projective plane P^2, defined with the help of an anti-holomorphic involution j. This is motivated by analogous studies of algebraic surfaces of low degree in the twistor space P^3 of the 4-dimensional sphere S^4. Deformations of twistor fibers project to real surfaces in P^2, whose metric geometry is investigated. Attention is then focussed on toric del Pezzo surfaces that are the simplest type of surfaces in F of bidegree (1,1). These surfaces define orthogonal complex structures on specified dense open subsets of P^2 relative to its Fubini-Study metric. The discriminant loci of various surfaces of bidegree (1,1) are determined, and bounds given on the number of twistor fibers that are contained in more general algebraic surfaces in F.
Twistor geometry of the Flag manifold / Altavilla, Amedeo; Ballico, Edoardo; Brambilla, Maria Chiara; Salamon, Simon. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 303:1(2023). [10.1007/s00209-022-03161-x]
Twistor geometry of the Flag manifold
Maria Chiara Brambilla;
2023-01-01
Abstract
A study is made of algebraic curves and surfaces in the flag manifold F=SU(3)/T^2, and their configuration relative to the twistor projection π from F to the complex projective plane P^2, defined with the help of an anti-holomorphic involution j. This is motivated by analogous studies of algebraic surfaces of low degree in the twistor space P^3 of the 4-dimensional sphere S^4. Deformations of twistor fibers project to real surfaces in P^2, whose metric geometry is investigated. Attention is then focussed on toric del Pezzo surfaces that are the simplest type of surfaces in F of bidegree (1,1). These surfaces define orthogonal complex structures on specified dense open subsets of P^2 relative to its Fubini-Study metric. The discriminant loci of various surfaces of bidegree (1,1) are determined, and bounds given on the number of twistor fibers that are contained in more general algebraic surfaces in F.File | Dimensione | Formato | |
---|---|---|---|
Altavilla_Twistor-geometry-Flag-manifold_2023.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Altavilla_Twistor-geometry-Flag-manifold_Post-print.pdf
Open Access dal 17/12/2023
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.