Macronutrients (nitrogen—N; phosphorus—P; silicon—Si) play a crucial role in ocean surface waters stimulating the planktonic primary production; in fact, their concentrations are fundamental for the evaluation of the trophic status of the water body and eutrophication phenomena. Loads of nutrients into the sea are mainly represented by river runoff and depuration plant outflows. For this purpose, in the framework of the AdSWiM project, “Managed use of treated urban wastewater for the quality of the Adriatic Sea” levels of N-NO3, N-NO2, N-NH4, Si-Si(OH)4, P-PO4 (dissolved inorganic phosphorus—DIP) and total dissolved phosphorus (TDP) were determined colorimetrically at two sites in the Gulf of Trieste: Lignano Sabbiadoro and San Giorgio di Nogaro. For each site, during the bathing seasons of 2019 and 2020, a sample from the depuration plant (DP) outflow and another one in the bottom seawater near the discharging pipelines were collected. Results showed a strong dilution effect on nutrient levels passing from DPs to the sea, from one to three orders of magnitude and a low and not harmful concentration in seawater. The outflow composition of the two DPs showed that the main fraction of dissolved inorganic nitrogen (DIN) was represented by N-NO3 for Lignano, while in San Giorgio the major contribution came from N-NH4. Concerning phosphorus, Lignano showed a higher content (about 3 times) of P levels than San Giorgio, but a similar percentage composition, DIP:DOP (77:23), compared to the seawater site one DIP:DOP (2:98). Despite the difference between the DPs, no substantial differences were found in the sea sites, demonstrating the negligible effect of the DP outflows in the nutrient levels in the study area
Impact of Depuration Plants on Nutrient Levels in the North Adriatic Sea / Fanelli, Matteo; Girolametti, Federico; Truzzi, Cristina; Illuminati, Silvia; Ajdini, Behixhe; Susmel, Sabina; Celussi, Mauro; Šangulin, Jadranka; Annibaldi, Anna. - In: WATER. - ISSN 2073-4441. - STAMPA. - 14:12(2022), p. 1930. [10.3390/w14121930]
Impact of Depuration Plants on Nutrient Levels in the North Adriatic Sea
Fanelli, Matteo;Girolametti, Federico
;Truzzi, Cristina;Illuminati, Silvia
;Ajdini, Behixhe;Annibaldi, Anna
2022-01-01
Abstract
Macronutrients (nitrogen—N; phosphorus—P; silicon—Si) play a crucial role in ocean surface waters stimulating the planktonic primary production; in fact, their concentrations are fundamental for the evaluation of the trophic status of the water body and eutrophication phenomena. Loads of nutrients into the sea are mainly represented by river runoff and depuration plant outflows. For this purpose, in the framework of the AdSWiM project, “Managed use of treated urban wastewater for the quality of the Adriatic Sea” levels of N-NO3, N-NO2, N-NH4, Si-Si(OH)4, P-PO4 (dissolved inorganic phosphorus—DIP) and total dissolved phosphorus (TDP) were determined colorimetrically at two sites in the Gulf of Trieste: Lignano Sabbiadoro and San Giorgio di Nogaro. For each site, during the bathing seasons of 2019 and 2020, a sample from the depuration plant (DP) outflow and another one in the bottom seawater near the discharging pipelines were collected. Results showed a strong dilution effect on nutrient levels passing from DPs to the sea, from one to three orders of magnitude and a low and not harmful concentration in seawater. The outflow composition of the two DPs showed that the main fraction of dissolved inorganic nitrogen (DIN) was represented by N-NO3 for Lignano, while in San Giorgio the major contribution came from N-NH4. Concerning phosphorus, Lignano showed a higher content (about 3 times) of P levels than San Giorgio, but a similar percentage composition, DIP:DOP (77:23), compared to the seawater site one DIP:DOP (2:98). Despite the difference between the DPs, no substantial differences were found in the sea sites, demonstrating the negligible effect of the DP outflows in the nutrient levels in the study areaI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.