Holey 2D metal oxides have shown great promise as functional materials for energy storage and catalysts. Despite impressive performance, their processing is challenged by the requirement of templates plus capping agents or high temperatures; these materials also exhibit excessive thicknesses and low yields. The present work reports a metal-based coordination polymer (MCP) strategy to synthesize polycrystalline, holey, metal oxide (MO) nanosheets with thicknesses as low as two-unit cells. The process involves rapid exfoliation of bulk-layered, MCPs (Ce-, Ti-, Zr-based) into atomically thin MCPs at room temperature, followed by transformation into holey 2D MOs upon the removal of organic linkers in aqueous solution. Further, this work represents an extra step for decorating the holey nanosheets using precursors of transition metals to engineer their band alignments, establishing a route to optimize their photocatalysis. The work introduces a simple, high-yield, room-temperature, and template-free approach to synthesize ultrathin holey nanosheets with high-level functionalities.

Coordination Polymer to Atomically Thin, Holey, Metal-Oxide Nanosheets for Tuning Band Alignment / S. S., Mofarah; E., Adabifiroozjaei; R., Pardehkhorram; M. H. N., Assadi; M., Hinterstein; Y., Yao; X., Liu; M. B., Ghasemian; K., Kalantar-Zadeh; R., Mehmood; S., Bhattacharyya; Spadaro, M; C, ; J., Arbiol; S., Lim; Y., Xu; T. S., Suzuki; H., Arandiyan; P., Koshy; C. C., Sorrell.. - In: ADVANCED MATERIALS. - ISSN 1521-4095. - 3152:(2019). [10.1002/adma.201905288]

Coordination Polymer to Atomically Thin, Holey, Metal-Oxide Nanosheets for Tuning Band Alignment

Spadaro M;
2019-01-01

Abstract

Holey 2D metal oxides have shown great promise as functional materials for energy storage and catalysts. Despite impressive performance, their processing is challenged by the requirement of templates plus capping agents or high temperatures; these materials also exhibit excessive thicknesses and low yields. The present work reports a metal-based coordination polymer (MCP) strategy to synthesize polycrystalline, holey, metal oxide (MO) nanosheets with thicknesses as low as two-unit cells. The process involves rapid exfoliation of bulk-layered, MCPs (Ce-, Ti-, Zr-based) into atomically thin MCPs at room temperature, followed by transformation into holey 2D MOs upon the removal of organic linkers in aqueous solution. Further, this work represents an extra step for decorating the holey nanosheets using precursors of transition metals to engineer their band alignments, establishing a route to optimize their photocatalysis. The work introduces a simple, high-yield, room-temperature, and template-free approach to synthesize ultrathin holey nanosheets with high-level functionalities.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/308949
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 35
social impact