Copper chalcogenides are outstanding thermoelectric materials for applications in the medium-high temperature range. Among different chalcogenides, while Cu2−xSe is characterized by higher thermoelectric figures of merit, Cu2−xS provides advantages in terms of low cost and element abundance. In the present work, we investigate the effect of different dopants to enhance the Cu2−xS performance and also its thermal stability. Among the tested options, Pb-doped Cu2−xS shows the highest improvement in stability against sulfur volatilization. Additionally, Pb incorporation allows tuning charge carrier concentration, which enables a significant improvement of the power factor. We demonstrate here that the introduction of an optimal additive amount of just 0.3% results in a threefold increase of the power factor in the middle-temperature range (500–800 K) and a record dimensionless thermoelectric figure of merit above 2 at 880 K.

Doping-mediated stabilization of copper vacancies to promote thermoelectric properties of Cu2− xS / Yu, Zhang; Congcong, Xing; Yu, Liu; Spadaro, M; C, ; Xiang, Wang; Mengyao, Li; Ke, Xiao; Ting, Zhang; Pablo, Guardia; Khak Ho, Lim; Ahmad Ostovari, Moghaddam; Jordi, Llorca; Jordi, Arbiol; Maria, Ibáñez; Andreu, Cabot. - In: NANO ENERGY. - ISSN 2211-2855. - 85:(2021). [10.1016/j.nanoen.2021.105991]

Doping-mediated stabilization of copper vacancies to promote thermoelectric properties of Cu2− xS

Spadaro M;
2021-01-01

Abstract

Copper chalcogenides are outstanding thermoelectric materials for applications in the medium-high temperature range. Among different chalcogenides, while Cu2−xSe is characterized by higher thermoelectric figures of merit, Cu2−xS provides advantages in terms of low cost and element abundance. In the present work, we investigate the effect of different dopants to enhance the Cu2−xS performance and also its thermal stability. Among the tested options, Pb-doped Cu2−xS shows the highest improvement in stability against sulfur volatilization. Additionally, Pb incorporation allows tuning charge carrier concentration, which enables a significant improvement of the power factor. We demonstrate here that the introduction of an optimal additive amount of just 0.3% results in a threefold increase of the power factor in the middle-temperature range (500–800 K) and a record dimensionless thermoelectric figure of merit above 2 at 880 K.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/308929
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact