In [Journal of Pure and Applied Algebra 224 (2020), no 12, 106449], V. Mazorchuk and R. Mrđen (with some help by A. Hultman) prove that, given a Weyl group, the intersection of a Bruhat interval with a parabolic coset has a unique maximal element and a unique minimal element. We show that such intersections are actually Bruhat intervals also in the case of an arbitrary Coxeter group.
Bruhat intervals and parabolic cosets in arbitrary Coxeter groups / Marietti, M.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - STAMPA. - 614:(2023), pp. 1-4. [10.1016/j.jalgebra.2022.09.023]
Bruhat intervals and parabolic cosets in arbitrary Coxeter groups
Marietti M.
2023-01-01
Abstract
In [Journal of Pure and Applied Algebra 224 (2020), no 12, 106449], V. Mazorchuk and R. Mrđen (with some help by A. Hultman) prove that, given a Weyl group, the intersection of a Bruhat interval with a parabolic coset has a unique maximal element and a unique minimal element. We show that such intersections are actually Bruhat intervals also in the case of an arbitrary Coxeter group.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0021869322004665-main.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
215.56 kB
Formato
Adobe PDF
|
215.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2205.07733v1.pdf
accesso aperto
Tipologia:
Documento in pre-print (manoscritto inviato all’editore precedente alla peer review)
Licenza d'uso:
Creative commons
Dimensione
100.04 kB
Formato
Adobe PDF
|
100.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.