In [Journal of Pure and Applied Algebra 224 (2020), no 12, 106449], V. Mazorchuk and R. Mrđen (with some help by A. Hultman) prove that, given a Weyl group, the intersection of a Bruhat interval with a parabolic coset has a unique maximal element and a unique minimal element. We show that such intersections are actually Bruhat intervals also in the case of an arbitrary Coxeter group.

Bruhat intervals and parabolic cosets in arbitrary Coxeter groups

Marietti M.
2023

Abstract

In [Journal of Pure and Applied Algebra 224 (2020), no 12, 106449], V. Mazorchuk and R. Mrđen (with some help by A. Hultman) prove that, given a Weyl group, the intersection of a Bruhat interval with a parabolic coset has a unique maximal element and a unique minimal element. We show that such intersections are actually Bruhat intervals also in the case of an arbitrary Coxeter group.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/308362
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact