Rhamnolipids (RLs) are biosurfactants with significant tensioactive and emulsifying properties. They are mainly composed by mono-RL and di-RL components. Although there are numerous studies concerning their molecular properties, information is scarce regarding the mechanisms by which each of the two components interacts with cell membranes. Herein, we performed phase-contrast and fluorescence microscopy experiments on plasma membrane models represented by giant-unilamellar-vesicles (GUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 2-[[(E,2S,3R)-1,3-dihydroxy-2-(octadecanoylamino) octadec-4-enyl]peroxy-hydroxyphosphoryl]oxyethyl-trimethylazanium (sphingomyelin, SM) and (3β)-cholest-5-en-3-ol (cholesterol, CHOL) (1:1:1 M ratio), which present liquid-order (Lo) liquid-disorder (Ld) phase coexistence, in the presence of either mono-RL or di-RL in 0.06–0.25 mM concentration range. A new method has been developed to determine area and volume of GUVs with asymmetrical shape and a kinetic model describing GUV-RL interaction in terms of two mechanisms, RL-insertion and pore formation, has been worked out. Results show that the insertion of mono-RL in the membrane outer leaflet is the dominant process with no pore formation and a negligible effect in modifying membrane permeability, but induces lipid mixing. Conversely, the di-RL-GUV interaction begins with the insertion mechanism and, as the time passes by, the pore formation process occurs. The analyses of di-RL show that the whole process is only relevant in the Ld phase with a higher extent to 0.25 mM than to 0.06 mM.
Unveiling the mono-rhamnolipid and di-rhamnolipid mechanisms of action upon plasma membrane models / Marega Motta, A.; Donato, M.; Mobbili, G.; Mariani, P.; Itri, R.; Spinozzi, F.. - In: JOURNAL OF COLLOID AND INTERFACE SCIENCE. - ISSN 0021-9797. - STAMPA. - 624:(2022), pp. 579-592. [10.1016/j.jcis.2022.05.145]
Unveiling the mono-rhamnolipid and di-rhamnolipid mechanisms of action upon plasma membrane models
Marega Motta A.Primo
;Mobbili G.;Mariani P.;Itri R.;Spinozzi F.
Ultimo
2022-01-01
Abstract
Rhamnolipids (RLs) are biosurfactants with significant tensioactive and emulsifying properties. They are mainly composed by mono-RL and di-RL components. Although there are numerous studies concerning their molecular properties, information is scarce regarding the mechanisms by which each of the two components interacts with cell membranes. Herein, we performed phase-contrast and fluorescence microscopy experiments on plasma membrane models represented by giant-unilamellar-vesicles (GUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 2-[[(E,2S,3R)-1,3-dihydroxy-2-(octadecanoylamino) octadec-4-enyl]peroxy-hydroxyphosphoryl]oxyethyl-trimethylazanium (sphingomyelin, SM) and (3β)-cholest-5-en-3-ol (cholesterol, CHOL) (1:1:1 M ratio), which present liquid-order (Lo) liquid-disorder (Ld) phase coexistence, in the presence of either mono-RL or di-RL in 0.06–0.25 mM concentration range. A new method has been developed to determine area and volume of GUVs with asymmetrical shape and a kinetic model describing GUV-RL interaction in terms of two mechanisms, RL-insertion and pore formation, has been worked out. Results show that the insertion of mono-RL in the membrane outer leaflet is the dominant process with no pore formation and a negligible effect in modifying membrane permeability, but induces lipid mixing. Conversely, the di-RL-GUV interaction begins with the insertion mechanism and, as the time passes by, the pore formation process occurs. The analyses of di-RL show that the whole process is only relevant in the Ld phase with a higher extent to 0.25 mM than to 0.06 mM.File | Dimensione | Formato | |
---|---|---|---|
marega_motta2022_full_red.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
8.97 MB
Formato
Adobe PDF
|
8.97 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
accepted_with_SI_red.pdf
Open Access dal 30/05/2024
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
9.59 MB
Formato
Adobe PDF
|
9.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.