AM-FM decomposition techniques have been successfully used for extracting significative features from a large variety of signals, helping realtime signal monitoring and pattern recognition, since they represent signals as a simultaneous composition of amplitude modulation and frequency modulation, where the carriers, amplitude envelopes, and the instantaneous frequencies are the features to be estimated. Human activities often involve repetitive movements, such as in running or cycling, where sinusoidal AM-FM decompositions of signals have already demonstrated to be useful to extract compact features to aid monitoring, classification, or detection. In this work we thus present the challenges and results of implementing the iterated coherent Hilbert decomposition (ICHD), a particularly effective algorithm to obtain an AM-FM decomposition, within a resource-constrained and low-power ARM Cortex-M4 microcontroller that is present in a wearable sensor we developed. We apply ICHD to the gyroscope data acquired from an inertial measurement unit (IMU) that is present in the sensor. Optimizing the implementation allowed us to achieve real-time performance using less then 16 % of the available CPU time, while consuming only about 5.4 mW of power, which results in a run-time of over 7 days using a small 250 mAh rechargeable cell.

Embedded AM-FM Signal Decomposition Algorithm for Continuous Human Activity Monitoring / Biagetti, Giorgio; Crippa, Paolo; Bocchini, Dario; Alessandrini, Michele; Falaschetti, Laura; Turchetti, Claudio. - In: PROCEDIA COMPUTER SCIENCE. - ISSN 1877-0509. - ELETTRONICO. - 207:(2022), pp. 3415-3423. (Intervento presentato al convegno 26th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES 2022) tenutosi a Verona, Italy nel 7-9 Settembre 2022) [10.1016/j.procs.2022.09.401].

Embedded AM-FM Signal Decomposition Algorithm for Continuous Human Activity Monitoring

Biagetti, Giorgio;Crippa, Paolo
;
Alessandrini, Michele;Falaschetti, Laura;Turchetti, Claudio
2022-01-01

Abstract

AM-FM decomposition techniques have been successfully used for extracting significative features from a large variety of signals, helping realtime signal monitoring and pattern recognition, since they represent signals as a simultaneous composition of amplitude modulation and frequency modulation, where the carriers, amplitude envelopes, and the instantaneous frequencies are the features to be estimated. Human activities often involve repetitive movements, such as in running or cycling, where sinusoidal AM-FM decompositions of signals have already demonstrated to be useful to extract compact features to aid monitoring, classification, or detection. In this work we thus present the challenges and results of implementing the iterated coherent Hilbert decomposition (ICHD), a particularly effective algorithm to obtain an AM-FM decomposition, within a resource-constrained and low-power ARM Cortex-M4 microcontroller that is present in a wearable sensor we developed. We apply ICHD to the gyroscope data acquired from an inertial measurement unit (IMU) that is present in the sensor. Optimizing the implementation allowed us to achieve real-time performance using less then 16 % of the available CPU time, while consuming only about 5.4 mW of power, which results in a run-time of over 7 days using a small 250 mAh rechargeable cell.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/307262
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact