Photonic devices based on stacked multilayer waveguides are widely used in optical integrated architectures like polarizers, filters, photodetectors, laser, transducers for sensing applications, and microelectromechanical systems. In this paper, we present an accurate modeling of a waveguide polarizer based on an antiresonant reflecting optical waveguide (ARROW) structure utilizing birefringence form. The ARROW polarizer is the case of a structure with severe “aspect-ratio” that most of numerical technique cannot handle. The electromagnetic analysis is performed by means of a transmission-line matrix integral-equation (TLMIE) method-based solver. TLMIE is a three-dimensional full-wave hybrid technique that combines the advantages of the numerical transmission-line matrix method in dense finite regions and those of the integral-equation method in homogeneous regions where analytical and/or numerical Green’s functions are available. An accurate investigation of propagation/radiation properties of TE/TM modes is performed. Theoretical results of TE/TM losses are compared to measured data showing very good agreement. Starting from this validation, it seems possible to provide design criteria for the optimization of the polarizer

Accurate Modeling of TE/TM Propagation and Losses of Integrated Optical Polarizer / Pierantoni, Luca; Massaro, A.; Rozzi, Tullio. - In: IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. - ISSN 0018-9480. - Volume: 53, Issue:6, June 2005:(2005), pp. 1856-1862. [10.1109/TMTT.2005.848100]

Accurate Modeling of TE/TM Propagation and Losses of Integrated Optical Polarizer

PIERANTONI, Luca;ROZZI, TULLIO
2005-01-01

Abstract

Photonic devices based on stacked multilayer waveguides are widely used in optical integrated architectures like polarizers, filters, photodetectors, laser, transducers for sensing applications, and microelectromechanical systems. In this paper, we present an accurate modeling of a waveguide polarizer based on an antiresonant reflecting optical waveguide (ARROW) structure utilizing birefringence form. The ARROW polarizer is the case of a structure with severe “aspect-ratio” that most of numerical technique cannot handle. The electromagnetic analysis is performed by means of a transmission-line matrix integral-equation (TLMIE) method-based solver. TLMIE is a three-dimensional full-wave hybrid technique that combines the advantages of the numerical transmission-line matrix method in dense finite regions and those of the integral-equation method in homogeneous regions where analytical and/or numerical Green’s functions are available. An accurate investigation of propagation/radiation properties of TE/TM modes is performed. Theoretical results of TE/TM losses are compared to measured data showing very good agreement. Starting from this validation, it seems possible to provide design criteria for the optimization of the polarizer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/30646
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact