This paper describes the gretl function package ParMA, which provides Bayesian model averaging (BMA) in generalized linear models. In order to overcome the lack of analytical specification for many of the models covered, the package features an implementation of the reversible jump Markov chain Monte Carlo technique, following the original idea by Green (1995), as a flexible tool to model several specifications. Particular attention is devoted to computational aspects such as the automatization of the model building procedure and the parallelization of the sampling scheme.

ParMA: Parallelized Bayesian Model Averaging for Generalized Linear Models / Lucchetti, Riccardo; Pedini, Luca. - In: JOURNAL OF STATISTICAL SOFTWARE. - ISSN 1548-7660. - ELETTRONICO. - 104:2(2022), pp. 1-39. [10.18637/jss.v104.i02]

ParMA: Parallelized Bayesian Model Averaging for Generalized Linear Models

Lucchetti, Riccardo
;
Pedini, Luca
2022-01-01

Abstract

This paper describes the gretl function package ParMA, which provides Bayesian model averaging (BMA) in generalized linear models. In order to overcome the lack of analytical specification for many of the models covered, the package features an implementation of the reversible jump Markov chain Monte Carlo technique, following the original idea by Green (1995), as a flexible tool to model several specifications. Particular attention is devoted to computational aspects such as the automatization of the model building procedure and the parallelization of the sampling scheme.
2022
File in questo prodotto:
File Dimensione Formato  
v104i02.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/306422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact