Rechargeable aqueous batteries are promising devices for large-scale energy-storage applications because of their low-cost, inherent safety, and environmental friendliness. Among them, aqueous ammonium-ion (NH4+) batteries (AAIB) are currently emerging owing to the fast diffusion kinetics of NH4+. Nevertheless, it is still a challenge to obtain stable AAIB with relatively high output potential, considering the instability of many electrode materials in an aqueous environment. Herein, a cell based on a concentrated (5.8 m) aqueous (NH4)(2)SO4 electrolyte, ammonium copper hexacyanoferrate (N-CuHCF) as the positive electrode (cathode), and 3,4,9,10-perylene-bis(dicarboximide) (PTCDI) as the negative electrode (anode) is reported. The solvation structure, electrochemical properties, as well as the electrode-electrolyte interface and interphase are systematically investigated by the combination of theoretical and experimental methods. The results indicate a remarkable cycling performance of the low-cost rocking-chair AAIB, which offers a capacity retention of approximate to 72% after 1000 cycles and an average output potential of approximate to 1.0 V.
Concentrated Electrolytes Enabling Stable Aqueous Ammonium-Ion Batteries / Han, Jin; Zarrabeitia, Maider; Mariani, Alessandro; Kuenzel, Matthias; Mullaliu, Angelo; Varzi, Alberto; Passerini, Stefano. - In: ADVANCED MATERIALS. - ISSN 0935-9648. - 34:32(2022), p. 2201877. [10.1002/adma.202201877]
Concentrated Electrolytes Enabling Stable Aqueous Ammonium-Ion Batteries
Mariani, AlessandroWriting – Original Draft Preparation
;
2022-01-01
Abstract
Rechargeable aqueous batteries are promising devices for large-scale energy-storage applications because of their low-cost, inherent safety, and environmental friendliness. Among them, aqueous ammonium-ion (NH4+) batteries (AAIB) are currently emerging owing to the fast diffusion kinetics of NH4+. Nevertheless, it is still a challenge to obtain stable AAIB with relatively high output potential, considering the instability of many electrode materials in an aqueous environment. Herein, a cell based on a concentrated (5.8 m) aqueous (NH4)(2)SO4 electrolyte, ammonium copper hexacyanoferrate (N-CuHCF) as the positive electrode (cathode), and 3,4,9,10-perylene-bis(dicarboximide) (PTCDI) as the negative electrode (anode) is reported. The solvation structure, electrochemical properties, as well as the electrode-electrolyte interface and interphase are systematically investigated by the combination of theoretical and experimental methods. The results indicate a remarkable cycling performance of the low-cost rocking-chair AAIB, which offers a capacity retention of approximate to 72% after 1000 cycles and an average output potential of approximate to 1.0 V.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.