We extend to the infinite dimensional context the link between two completely different topics recently highlighted by the authors: the classical eigenvalue problem for real square matrices and the Brouwer degree for maps between oriented finite dimensional real manifolds. Thanks to this extension, we solve a conjecture regarding global continuation in nonlinear spectral theory that we have formulated in a recent article. Our result (the ex conjecture) is applied to prove a Rabinowitz type global continuation property of the solutions to a perturbed motion equation containing an air resistance frictional force.

A Degree Associated to Linear Eigenvalue Problems in Hilbert Spaces and Applications to Nonlinear Spectral Theory / Benevieri, Pierluigi; Calamai, Alessandro; Furi, Massimo; Patrizia Pera, Maria. - In: JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS. - ISSN 1040-7294. - STAMPA. - 34:1(2022), pp. 555-581. [10.1007/s10884-020-09921-9]

A Degree Associated to Linear Eigenvalue Problems in Hilbert Spaces and Applications to Nonlinear Spectral Theory

Alessandro Calamai;
2022-01-01

Abstract

We extend to the infinite dimensional context the link between two completely different topics recently highlighted by the authors: the classical eigenvalue problem for real square matrices and the Brouwer degree for maps between oriented finite dimensional real manifolds. Thanks to this extension, we solve a conjecture regarding global continuation in nonlinear spectral theory that we have formulated in a recent article. Our result (the ex conjecture) is applied to prove a Rabinowitz type global continuation property of the solutions to a perturbed motion equation containing an air resistance frictional force.
File in questo prodotto:
File Dimensione Formato  
2022-Becafupe_JDDE.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 462.65 kB
Formato Adobe PDF
462.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/306020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact