In this paper we consider singularly perturbed nonlinear Schrödinger equations with electromagnetic potentials and involving continuous nonlinearities with subcritical, critical or supercritical growth. By means of suitable variational techniques, truncation arguments and Lusternik-Schnirelman theory, we relate the number of nontrivial complex-valued solutions with the topology of the set where the electric potential attains its minimum value.

Multiple solutions for singularly perturbed nonlinear magnetic Schrödinger equations

Ambrosio V.
2022-01-01

Abstract

In this paper we consider singularly perturbed nonlinear Schrödinger equations with electromagnetic potentials and involving continuous nonlinearities with subcritical, critical or supercritical growth. By means of suitable variational techniques, truncation arguments and Lusternik-Schnirelman theory, we relate the number of nontrivial complex-valued solutions with the topology of the set where the electric potential attains its minimum value.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/305560
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact