Cellular senescence is a hallmark of aging and a promising target for therapeutic approaches. The identification of senescent cells requires multiple biomarkers and complex experimental procedures, resulting in increased variability and reduced sensitivity. Here, we propose a simple and broadly applicable imaging flow cytometry (IFC) method. This method is based on measuring autofluorescence and morphological parameters and on applying recent artificial intelligence (AI) and machine learning (ML) tools. We show that the results of this method are superior to those obtained measuring the classical senescence marker, senescence-associated beta-galactosidase (SA-β-Gal). We provide evidence that this method has the potential for diagnostic or prognostic applications as it was able to detect senescence in cardiac pericytes isolated from the hearts of patients affected by end-stage heart failure. We additionally demonstrate that it can be used to quantify senescence "in vivo" and can be used to evaluate the effects of senolytic compounds. We conclude that this method can be used as a simple and fast senescence assay independently of the origin of the cells and the procedure to induce senescence.

Simple Detection of Unstained Live Senescent Cells with Imaging Flow Cytometry / Malavolta, Marco; Giacconi, Robertina; Piacenza, Francesco; Strizzi, Sergio; Cardelli, Maurizio; Bigossi, Giorgia; Marcozzi, Serena; Tiano, Luca; Marcheggiani, Fabio; Matacchione, Giulia; Giuliani, Angelica; Olivieri, Fabiola; Crivellari, Ilaria; Beltrami, Antonio Paolo; Serra, Alessandro; Demaria, Marco; Provinciali, Mauro. - In: CELLS. - ISSN 2073-4409. - 11:16(2022), p. 2506. [10.3390/cells11162506]

Simple Detection of Unstained Live Senescent Cells with Imaging Flow Cytometry

Malavolta, Marco
;
Tiano, Luca;Marcheggiani, Fabio;Matacchione, Giulia;Giuliani, Angelica;Olivieri, Fabiola;
2022-01-01

Abstract

Cellular senescence is a hallmark of aging and a promising target for therapeutic approaches. The identification of senescent cells requires multiple biomarkers and complex experimental procedures, resulting in increased variability and reduced sensitivity. Here, we propose a simple and broadly applicable imaging flow cytometry (IFC) method. This method is based on measuring autofluorescence and morphological parameters and on applying recent artificial intelligence (AI) and machine learning (ML) tools. We show that the results of this method are superior to those obtained measuring the classical senescence marker, senescence-associated beta-galactosidase (SA-β-Gal). We provide evidence that this method has the potential for diagnostic or prognostic applications as it was able to detect senescence in cardiac pericytes isolated from the hearts of patients affected by end-stage heart failure. We additionally demonstrate that it can be used to quantify senescence "in vivo" and can be used to evaluate the effects of senolytic compounds. We conclude that this method can be used as a simple and fast senescence assay independently of the origin of the cells and the procedure to induce senescence.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/305503
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact