The aim of the present research work is to design a control law for a quadcopter drone based on the Virtual Attractive-Repulsive Potentials (VARP) theory. VARP theory, originally designed to enable path following by a small wheeled robot, will be tailored to control a quadcopter drone, hence allowing such device to learn flight planning. The proposed strategy combines an instance of VARP method to control a drone's attitude (SO(3)-VARP) and an instance of VARP method to control a drone's spatial location (R-3-VARP). The resulting control strategy will be referred to as double-VARP method, which aims at making a drone follow a predefined path in space. Since the model of the drone as well as the devised control theory are formulated on a Lie group, their simulation on a computing platform is performed through a numerical analysis method specifically designed for these kinds of numerical simulations. A numerical simulation analysis is used to assess the salient features of the proposed regulation theory. In particular, resilience against shock-type disturbances are assessed numerically.

Lie-Group Type Quadcopter Control Design by Dynamics Replacement and the Virtual Attractive-Repulsive Potentials Theory

Simone Fiori
Primo
Formal Analysis
;
Luca Bigelli
Secondo
Software
;
Federico Polenta
Ultimo
Software
2022

Abstract

The aim of the present research work is to design a control law for a quadcopter drone based on the Virtual Attractive-Repulsive Potentials (VARP) theory. VARP theory, originally designed to enable path following by a small wheeled robot, will be tailored to control a quadcopter drone, hence allowing such device to learn flight planning. The proposed strategy combines an instance of VARP method to control a drone's attitude (SO(3)-VARP) and an instance of VARP method to control a drone's spatial location (R-3-VARP). The resulting control strategy will be referred to as double-VARP method, which aims at making a drone follow a predefined path in space. Since the model of the drone as well as the devised control theory are formulated on a Lie group, their simulation on a computing platform is performed through a numerical analysis method specifically designed for these kinds of numerical simulations. A numerical simulation analysis is used to assess the salient features of the proposed regulation theory. In particular, resilience against shock-type disturbances are assessed numerically.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11566/304366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact